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ABSTRACT
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Report Title

The goal of filtering theory is to compute the filter distribution, that is, the conditional distribution of a stochastic 
model given observed data. While exact computations are rarely possible, sequential Monte Carlo algorithms known 
as particle filters have been successfully applied to approximate the filter distribution, providing estimates whose 
error is uniform in time. However, the number of Monte Carlo samples needed to approximate the filter distribution 
is typically exponential in the number of degrees of freedom of the model. This issue, known as curse of 
dimensionality, has rendered sequential Monte Carlo algorithms largely useless in high-dimensional applications 
such as multi-target tracking, weather prediction, and oceanography. While over the past twenty years many 
heuristics have been suggested to run particle filters in high dimension, no principled approach has ever been 
proposed to address the core of the problem.



In this thesis we develop a novel framework to investigate high-dimensional filter- ing models and to design 
algorithms that can avoid the curse of dimensionality. Using concepts and tools from statistical mechanics, we show 
that the decay of correlations property of high-dimensional models can be exploited by implementing localization 
procedures on ordinary particle filters that can lead to estimates whose approximation error is uniform both in time 
and in the model dimension.



Ergodic and spatial mixing properties of conditional distributions play a crucial role in the design of filtering 
algorithms, and they are of independent interest in probability theory. To better capture ergodicity quantitatively, we 
develop new com- parison theorems to establish dimension-free bounds on high-dimensional probability measures in 
terms of their local conditional distributions. At a qualitative level, we investigate previously unknown phenomena 
that can only arise from conditioning in infinite dimension. In particular, we exhibit the first known example of a 
model where ergodicity of the filter undergoes a phase transition in the signal-to-noise ratio.



Nonlinear Filtering in High Dimension

Patrick Rebeschini

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Operations Research and Financial Engineering

Adviser: Ramon van Handel

June 2, 2014



c© Copyright by Patrick Rebeschini, 2014.
All rights reserved.



Abstract

The goal of filtering theory is to compute the filter distribution, that is, the conditional
distribution of a stochastic model given observed data. While exact computations are
rarely possible, sequential Monte Carlo algorithms known as particle filters have been
successfully applied to approximate the filter distribution, providing estimates whose
error is uniform in time. However, the number of Monte Carlo samples needed to
approximate the filter distribution is typically exponential in the number of degrees
of freedom of the model. This issue, known as curse of dimensionality, has rendered
sequential Monte Carlo algorithms largely useless in high-dimensional applications
such as multi-target tracking, weather prediction, and oceanography. While over the
past twenty years many heuristics have been suggested to run particle filters in high
dimension, no principled approach has ever been proposed to address the core of the
problem.

In this thesis we develop a novel framework to investigate high-dimensional filter-
ing models and to design algorithms that can avoid the curse of dimensionality. Using
concepts and tools from statistical mechanics, we show that the decay of correlations
property of high-dimensional models can be exploited by implementing localization
procedures on ordinary particle filters that can lead to estimates whose approximation
error is uniform both in time and in the model dimension.

Ergodic and spatial mixing properties of conditional distributions play a crucial
role in the design of filtering algorithms, and they are of independent interest in
probability theory. To better capture ergodicity quantitatively, we develop new com-
parison theorems to establish dimension-free bounds on high-dimensional probability
measures in terms of their local conditional distributions. At a qualitative level, we
investigate previously unknown phenomena that can only arise from conditioning in
infinite dimension. In particular, we exhibit the first known example of a model where
ergodicity of the filter undergoes a phase transition in the signal-to-noise ratio.
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Chapter 1

Introduction

1.1 Nonlinear filtering and particle filters

A fundamental problem in a broad range of applications is the combination of ob-
served data and dynamical models. Particularly in highly complex systems with
partial observations, the effective extraction and utilization of the information con-
tained in observed data can only be accomplished by exploiting the availability of
accurate predictive models of the underlying dynamical phenomena of interest. Such
problems arise in applications that range from classical tracking problems in naviga-
tion and robotics to extremely large-scale problems such as weather forecasting. In
the latter setting, and in other complex applications in the geophysical, atmospheric
and ocean sciences, incorporating observed data into dynamical models is called data
assimilation.

From a statistical perspective, it is in principle simple to formulate the optimal
solution to the data assimilation problem. We model the dynamical process that is not
directly observable as a time-homogeneous Markov chain (Xn)n≥0 on a measurable
space (E,E), with P(Xn ∈ dz|Xn−1 = x) = p(x, z)ψ(dz), for a certain transition
density p and reference measure ψ. We model the noisy observations (Yn)n≥0 as a
collection of random variables on a measurable space (F,F) that are conditionally
independent given (Xn)n≥0, with P(Yn ∈ dz|Xn = x) = g(x, z)ϕ(dz), for a certain
observation density g and reference measure ϕ. The joint process (Xn, Yn)n≥0 that
takes values in (E × F,E ⊗ F) is called hidden Markov model, and its dependency
structure is illustrated in Figure 1.1.

Yn−1 Yn Yn+1

// Xn−1

g

OO

p
// Xn

g

OO

p
// Xn+1

g

OO

//

Figure 1.1: Dependency graph of a hidden Markov model.
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In many applications one is interested in estimating the hidden state Xn based
on the observation history Y1, . . . , Yn to date, and to compute E(f(Xn)|Y1, . . . , Yn)
for a certain function f , or for a certain class of functions. For instance, we might
be interested in tracking the position of a boat given the noisy measurements coming
from a radar, and we might want to know how accurate our estimates are. Or we
might be interested in evaluating the temperature field of the weather over a certain
geographical location given the noisy measurements coming from weather stations,
together with the uncertainty in our estimates. More generally, one is often interested
in computing the conditional mean and variance of the underlying process given the
observations history.

However, in almost all cases the conditional estimates for individual functions do
not form a closed system of equations, and one has to compute the nonlinear filter
distribution

πn := P(Xn ∈ · |Y1, . . . , Yn).

If the filter πn can be computed, it yields an optimal (in the least mean square
sense) estimate of Xn given the observations up to time n, as well as a complete
representation of the uncertainty in this estimate.

An important property of the filter is its recursive structure: πn depends only on
πn−1 and the new observation Yn. In fact, it is easily verified using the Bayes formula
(cf. Section 3.3) that πn can be computed recursively in two steps, the so-called
prediction and correction step:

πn−1

prediction

−−−−−→ Pπn−1

correction

−−−−−→ πn = CnPπn−1,

where P and Cn are, respectively, the prediction and correction operators that are
defined as

(Pρ)f :=

∫
ρ(dx) p(x, x′)ψ(dx′) f(x′),

(Cnρ)f :=

∫
ρ(dx) g(x, Yn) f(x)∫
ρ(dx) g(x, Yn)

,

for any probability measure ρ on (E,E) and any measurable bounded function f .
When applied to the measure πn−1, P uses the dynamics of the underlying Markov
chain to “predict” Xn given the observation history Y1, . . . , Yn−1, namely,

Pπn−1 = P(Xn ∈ · |Y1, . . . , Yn−1).

Then, Cn “corrects” the predictive measure using the observation at time n, that is,
it weights the measure Pπn−1 by the likelihood function x→ g(x, Yn).

The recursive nature of the filter plays a crucial role in practice, as it allows
the computations to be implemented on-line over a long time horizon. In practice,
however, the optimal filter is almost never directly computable: it requires the prop-
agation of an entire conditional distribution, which generally does not admit any
efficiently computable sufficient statistics.
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The practical implementation of nonlinear filtering was therefore long considered
to be intractable until the discovery of a class of surprisingly efficient sequential Monte
Carlo algorithms, known as particle filters, for approximating the filter. The simplest
and most famous such algorithm is the sequential importance resampling (SIR) par-
ticle filter introduced by Gordon, Salmond and Smith in 1993 [28]. This algorithm
simply inserts a random sampling step into the Bayes recursion and approximates the
filter πn by the resulting empirical measure π̂n. That is,

π̂n−1

prediction

−−−−−→ Pπ̂n−1

sampling

−−−−−→ SNPπ̂n−1

correction

−−−−−→ π̂n := CnS
NPπ̂n−1,

where SN is the sampling operator that replaces whatever measure it is applied to
with its empirical measure with N independent Monte Carlo samples or particles,
namely,

SNρ :=
1

N

N∑

i=1

δX(i), X(1), . . . , X(N) are i.i.d. samples with distribution ρ,

where δx denotes the Dirac measure with mass located at x. It is not difficult to show
that this gives rise to a standard Monte Carlo error (cf. Section 3.3.1)

sup
|f |≤1

E |πnf − π̂nf | ≤
C√
N
,

which converges to zero in the limit for N that goes to infinity.

1.2 Filter stability

It turns out that in order to properly understand how the Monte Carlo approximation
of the filter recursion behaves, we need to understand the behavior of the filter distri-
bution itself. In fact, as shown in Section 3.3.1, a simple analysis that focuses on the
filter recursion πn = CnPπn−1 alone would yield that the constant C in the previous
bound growths exponentially with time n, which is what we would expect at first
as the SIR particle filter adds an approximation step (represented by the sampling
operator SN) to each iteration of Bayes formula. If the quality of the estimate given
by particle filters were really to deteriorate with time, then particle filters would be
totally useless in most practical applications, where one is interested in obtaining re-
liable estimates at any time. However, a deeper analysis that takes also into account
also the probabilistic structure of the filter distribution πn yields that the constant
C in the previous bound does not depend on time, so that particle filters can indeed
function in an on-line fashion.

Del Moral and Guionnet in 2001 [15] were the first to realize that the so-called
stability property of nonlinear filters can be use as a dissipation mechanism for the
approximation error of the SIR particle filter. Roughly speaking, filter stability says
that the filter forgets its initial condition as times goes on, something like

P(Xn ∈ · |X0Y1, . . . , Yn) ≈ P(Xn ∈ · |Y1, . . . , Yn) for n large enough.

3



This property represents a weak form of conditional independence in time: as
n increases, Xn becomes “close” to be conditionally independent of X0 given the
observation history Y1, . . . , Yn (different notions of “closeness” are considered in this
thesis, cf. Chapter 3 and Chapter 7).

From a practical perspective, the fact that the filter is insensitive to the knowledge
of the initial condition can be exploited to prove that approximation errors committed
by particle filters at each time step do not accumulate over time. It turns out that
the sampling step introduced at each iteration of Bayes formula is precisely the key
mechanism that allows particle filters to exploit filter stability and to yield time-
uniform error bounds.

As the error they commit is uniform in time, particle filters have proved to perform
extraordinarily well in many classical applications such as target tracking, speech
recognition, and finance [8].

1.3 Curse of dimensionality

Despite their widespread success, particle filters have nonetheless proved to be essen-
tially useless in truly complex data assimilation problems. The reason for this, long
known to practitioners, has only recently been subjected to mathematical analysis in
the work of Bickel et al. [4, 47]. Roughly speaking, the constant C in the above bound,
while independent of time n, must typically be exponential in the number of degrees
of freedom of the model. This curse of dimensionality does not affect most classical
tracking problems, where the dimension of the state space E × F where the model
(Xn, Yn)n≥0 lives is typically of order unity. If we want to track the location of a boat,
for instance, then we can take E = R2 (analogously, F = R2), which we interpret
as a two dimensional space (as the motion of the boat has two degrees of freedom).
On the other hand, the curse of dimensionality becomes absolutely prohibitive in
large-scale data assimilation problems such as weather forecasting and oceanography,
where model dimensions of order 107 are routinely encountered [1].

The curse of dimensionality of particle filters is a consequence of the general fact
that in high dimension probability measures tend to be singular, that is, they tend
to put mass on different portions of the space. The problem appears even in a single
iteration of the SIR algorithm, and it is due to the correction step performed by
the operator Cn: in high dimension, typical samples coming from a measure ρ have
small likelihood under the measure Cnρ, as illustrated in Figure 1.2. Hence, in high
dimension already the empirical measure π̂1 has a small fraction of particles that
meaningfully approximate the filter distribution π1 (cf. Section 3.3.3).

While this phenomenon is now fairly well understood, there exists no rigorous
approach to date for alleviating this problem [3, 60]. Practical data assimilation in
high-dimensional models is therefore generally performed by means of ad-hoc algo-
rithms, frequently based on (questionable) Gaussian approximations, that possess
limited theoretical justification [34, 37, 1].

4



Curse of dimensionality

Fundamental problem: as d ! 1, prob. measures become mutually singular.

Weight degeneracy: importance sampling can not fundamentally address the issue
due to the recursive nature of the filtering problem (see also Snyder 2011).

Q. Is there any hope?

Patrick Rebeschini (Princeton University) Particle filters and curse of dimensionality February 21, 2014 5 / 5

(a) (b)

⇢ Cn⇢

CnSN⇢

⇢ Cn⇢

CnSN⇢

Figure 1.2: Illustration of the curse of dimensionality in a typical iteration of the
SIR particle filter. (a) Probability measures in low dimension. (b) Probability
measures in high dimension (low-dimensional representation). Each sample X from
ρ is represented by a blue ball whose size is proportional to the likelihood g(X,Yn).
In high dimension ρ and Cnρ tend to put mass on different portions of the space.
For this reason, in high dimension only a small fraction of the samples coming from
ρ has a relevant likelihood with respect to the observation Yn.

1.4 Fundamental obstacle in high dimension?

One of the main contribution of this thesis is to show that there is no fundamental
obstacle to particle filtering in high dimension. We propose the first algorithm that
can avoid the curse of dimensionality, and we develop a general framework that en-
compasses a novel philosophy behind filtering in high dimension. From a practical
point of view, the framework that we propose provides a principled approach to de-
sign new algorithms for high-dimensional applications, where the current state of the
art relies exclusively on heuristics. From a theoretical point of view, it the first time
that ideas and tools from statistical mechanics are shown to play a fundamental role
in the analysis of filtering models.

Before discussing the key elements that constitute our framework, we present an
example that illustrates how it is possible to overcome the curse of dimensionality in
a trivial setting. This example sets the direction to follow for the development of our
theory.

Let V = {1, . . . , d} be a finite index set, and for each v ∈ V let (Xv
n, Y

v
n )n≥0

be a hidden Markov model of the type being considered so far, which takes values
in a measurable space (Ev × F v,Ev ⊗ Fv). Assume that the chains forming this
collection are independent, and consider the hidden Markov model (Xn, Yn)n≥0 with
Xn = (Xv

n)v∈V and Yn = (Y v
n )v∈V . This dependency structure is illustrated in Figure

1.3.
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Figure 1.3: Dependency graph of a (trivial) high-dimensional filtering model.

This model clearly defines a (trivial) high-dimensional model, where the dimension
is d, the number of independent chains being considered. From the theory of Bickel
et al. [4, 47] we know that the SIR particle filter fails miserably when applied to this
model, requiring a number of particles N that is exponential in d. However, in this
case one can surmount this problem in a trivial fashion: as each of the coordinates of
the high-dimensional model is independent, one can simply run an independent SIR
filter in each coordinate. It is evident that the local error of this algorithm (that is, the
error of the marginal of the filter in each coordinate) is, by construction, independent
of the model dimension d. In this sense, this trivial model shows that it is indeed
possible to filter very efficiently regardless of the ambient dimension (though not with
the SIR particle filter, which fails spectacularly).

In the literature there is the widespread belief that filtering in high dimension is
possible only if the high-dimensional model being considered lives in a low-dimensional
manifold (see [10] for instance). The trivial example that we just considered, however,
clearly contradicts this idea, as there is no low-dimensional structure: as the chains
are independent, the global dimension is the full model dimension d. The reason
why we can deal efficiently with this high-dimensional system is the fact that the
model is locally low-dimensional (the local dimension being 1, as each coordinate is
completely independent from the others), and the fact that we are interested in local
errors (marginals of the filtering distribution on spatial regions of a fixed size), as
opposed to the global measure of error usually considered in the literature for this
type of problems.

1.5 Decay of correlations and localization

While the trivial model previously introduced does not have any practical relevance,
we would like to extend the main ideas that guided our discussion in that case to
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nontrivial models that are of genuine practical interest. Several fundamental questions
arise immediately.

1. What sort of filtering models are natural to investigate in high dimension?

2. What sort of mechanism might allow to surmount the curse of dimensionality?

3. How can such a mechanism be exploited algorithmically?

We aim to address each of these questions in this thesis. Presently we provide an
informal discussion that is instrumental to describe the main contribution of our work.

1. What filtering models are natural to investigate in high dimension?
The local algorithm proposed to analyze the trivial model above (i.e., running the SIR
particle filter to each chain separately) was made possible because the components
of that model are truly independent. When this is not the case, we cannot run
independent particle filters in each dimension as all the dimensions are coupled by
the dynamics of the model. We must therefore introduce a general class of nontrivial
models in which the above intuition can nonetheless be implemented.

In most data assimilation problems, the high-dimensional nature of the model is
essentially due to its spatial structure: the aim of the problem is to track the dynamics
of a random field (for example, the atmospheric pressure and temperature fields in the
case of weather forecasting). We therefore take as a starting point the notion that the
coordinates Xv

n, Y
v
n (v ∈ V ) of our hidden Markov model are indexed by a large graph

G = (V,E) that represents the spatial degrees of freedom of the model. That is, we
consider the case (E,E) = (×v∈V E

v,
⊗

v∈V Ev) and (F,F) = (×v∈V F
v,
⊗

v∈V Fv).
It is of course not reasonable to expect that the dynamics at each spatial location is
independent, as was assumed in the trivial model previously discussed. On the other
hand, dynamics of spatial systems is typically local in nature: the dynamics at a
spatial location depends only on the states at locations in a neighborhood. Moreover,
the observations are typically local in the sense that (a subset of) spatial locations
are observed independently. The dependency structure of this type of models is
illustrated in Figure 1.4.

These local filtering models are prototypical of a broad range of high-dimensional
filtering problems, and they provide the basic framework for our main result. They
arise naturally in numerous complex and large-scale applications, including percola-
tion models of disease spread or forest fires, freeway traffic flow models, probabilistic
models on networks and large-scale queueing systems, and various biological, ecolog-
ical and neural models. Moreover, local Markov processes of this type arise naturally
from finite-difference approximation of stochastic partial differential equations, and
are therefore in principle applicable to a diverse set of data assimilation problems
that arise in areas such as weather forecasting, oceanography, and geophysics (cf.
Section 4.4.4).

2. What mechanism can allow to surmount the curse of dimensionality?
While the law of the model at each spatial location is no longer independent as in the
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Figure 1.4: Dependency graph of a high-dimensional filtering model of the type
considered in this thesis.

trivial model of the previous section, large-scale interacting systems can nonetheless
exhibit an approximate version of this property: this is the decay of correlations
phenomenon that has been particularly well studied in statistical mechanics (see,
e.g., [27]). Informally speaking, while the states (Xv

n, Y
v
n ) and (Xw

n , Y
w
n ) at two sites

v, w ∈ V are probably quite strongly correlated when v and w are close together, one
might expect that (Xv

n, Y
v
n ) and (Xw

n , Y
w
n ) are nearly independent when v and w are

far apart as measured with respect to the natural distance d in the graph G (that is,
d(v, w) is the length of the shortest path in G between v, w ∈ V ). The idea is that
due to the decay of correlations, also this type of model is locally low-dimensional,
in the sense that the conditional distribution of each coordinate only needs to be
updated by observations in a neighborhood whose size is independent of the ambient
dimension. That is,

P(Xv
n ∈ · |Y1, . . . , Yn) ≈ P(Xv

n ∈ · |Y w
1 , . . . , Y

w
n , d(v, w) ≤ b),

for b large enough. Roughly speaking, the “local dimension” of the model is the
number of coordinates in a ball whose radius is the correlation length of the filtering
distribution.

3. How can such a mechanism be exploited algorithmically?
Both filter stability and decay of correlations are probabilistic properties of the filter
distribution itself: filter stability represents a weak form of conditional independence
in time, and the decay of correlations property represents a weak form of conditional
independence in space (model dimension). As already mentioned, the sampling step
added to the original filter recursion is the key to exploit algorithmically filter stability
and get particle filters that yield time-uniform error bounds. One of the main goal of
this thesis is to show that proper forms of localization of the filter recursion can be
used to exploit algorithmically the decay of correlations property and to design local
particle filters that yield error bounds that are uniform both in time and in space.
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As mentioned above, the curse of dimensionality of particle filters is essentially due
to the fact that probability measures tend to be singular in high dimension. However,
while this is definitely what happens if we consider a high-dimensional model as a
whole, if the decay of correlations property holds then it should be possible to localize
the model and work with local low-dimensional portions of it. As the problem comes
from the correction step of the filter recursion, what really matters is the dimension
of the observations (cf. Section 3.3.2), and it makes sense to introduce a localization
step immediately before the operator Cn so that the model can behave as “local” for
the sake of likelihood-reweighting.

A speculative back-of-the-envelope computation explains how this might work.
Due to the decay of correlations, the conditional distribution of the site Xv

n given
the new observation Yn should not depend significantly on observations Y w

n at sites
w distant from v. Suppose we can develop a local particle filtering algorithm that
at each site v only uses observations in a local neighborhood K of v to update the
filtering distribution. As we have now restricted to observations in K, the sampling
error (the variance) at each site will be exponential only in cardK rather than in the
full dimension cardV . On the other hand, the truncation to observations in K is only
approximate: the decay of correlations property suggests that the bias introduced by
this truncation should decay exponentially in diamK. Therefore,

error = bias + variance ≈ e− diamK +
ecardK

√
N

.

If the size of the neighborhoods K is chosen so as to optimize the error, then the
resulting algorithm is evidently consistent (with a slower convergence rate than the
standard 1/

√
N Monte Carlo rate: this is likely unavoidable in high dimension) with

an error bound that is independent of the model dimension cardV .
So, the general idea of local particle filters is that one should introduce a spatial

regularization step into the filtering recursion that enables local sampling. While
these regularizations introduce some bias to ordinary particle filters, they largely
reduce their variance, and it is exactly the bias-variance tradeoff that emerges that
can be used to overcome the curse of dimensionality.

In this thesis we develop two localization procedures that aim at implementing
this idea.

1. Using independence: block particle filter
The most natural way to localize the filter recursion is to marginalize it. In this thesis
we analyze the block particle filter that we define iteratively as:

π̂n−1

prediction

−−−−−→ Pπ̂n−1

sampling

−−−−−→ SNPπ̂n−1

blocking

−−−−−→ BSNPπ̂n−1

correction

−−−−−→ π̂n := CnBS
NPπ̂n−1,

where B is an operator that projects a measure to the product of its marginals over
a certain partition K of “blocks” of the index set V , that is,

Bρ :=
⊗

K∈K

BKρ,
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where for any measure ρ on (E,E) and J ⊆ V we denote by BJρ the marginal of ρ
on (×v∈J E

v,
⊗

v∈J E
v).

This algorithm captures the main intuition that motivated our discussion on local
algorithms: choosing K =

⋃
v∈V {v}, in fact, the block particle filter reduces to apply-

ing the SIR particle filter independently to each of the components constituting the
model (which, of course, introduces a bias unless the components are independent).

In Chapter 4 we show that this local particle filter surmounts the key obstacle in
high dimension by providing local estimates that are uniform in time and that do
not depend on the ambient dimension.

2. Using conditional independence: localized Gibbs sampler particle filter
The block particle filter possesses some inherent limitations as it can only provide
spatially inhomogeneous approximations of the filter distribution. In fact, at each
iteration the algorithm projects the approximated filter measure into the product of
its marginals over a given (fixed) partition of the environment space.

In order to address this deficiency at a fundamental level, we consider a regular-
ization that aims at projecting probability measures to the class of Markov random
fields (of a certain interaction neighborhood), instead of projecting them to the class
of distributions that are independent across subsets of coordinates, as in the block
particle filter. This is precisely the idea that animates the localized Gibbs sampler
particle filter. Heuristically, this algorithm can be described as follows

π̂n−1

prediction

−−−−−→ Pπ̂n−1

projection

−−−−−→ MPπ̂n−1

correction

−−−−−→ CnMPπ̂n−1

sampling

−−−−−→ π̂n := SNCnMPπ̂n−1,

where M is an operator that projects a measure to the class of Markov random fields
of order b, that is,

(Mρ)(Xv ∈ A|XV \{v} = xV \{v}) = ρ(Xv ∈ A|XNb(v)\{v} = xNb(v)\{v})

for every v ∈ V , where Nb(v) := {v′ ∈ V : d(v, v′) ≤ b}.
As shown in Chapter 5, by sampling locally in each dimension rather than globally

over all dimensions, the localized Gibbs sampler particle filter implements a sort of
“resampling in space.” In this sense, the mechanism through which this algorithm
exploits the decay of correlations property to provide spatially-uniform error bounds
resembles the analogous mechanism that allows the SIR particle filter to exploit filter
stability and provide time-uniform error bounds.

While a complete analysis of this algorithm is still missing, we prove a one-step
error bound for the bias term that illustrates the way this algorithm can provide
spatially-uniform error bounds.

1.6 Comparison theorems for Gibbs measures

At this point it is not at all clear what sort of mathematical tools are needed to make
the speculative ideas discussed so far precise. In fact, the rigorous implementation
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of these ideas requires the introduction of a mathematical machinery that has not
previously been applied in the study of nonlinear filtering.

As the trivial example previously introduced illustrates, in order to describe effec-
tively filtering problems in high dimension it is necessary to perform a local analysis:
we want to look at a local measure of the error, and we want to be able to perform
the analysis using local quantities of the model. As any approximation of practical
utility in high dimension must yield error bounds that do not grow, or at least grow
sufficiently slowly, in the model dimension cardV , we seek for quantitative meth-
ods that allow to establish dimension-free bounds on high-dimensional probability
distributions.

A general method to address precisely this problem is the Dobrushin comparison
theorem that was developed by Dobrushin in the context of statistical mechanics
[18, Theorem 3]. In the approach pioneered by Dobrushin, Lanford, and Ruelle, a
high-dimensional (possibly infinite) system of interacting random variables is defined
by its local description: for finite sets of sites J ⊂ V , the conditional distribution
ρ(XJ ∈ · |XV \J = xV \J) of the configuration in J is specified given that the variables
outside J are frozen in a fixed configuration xV \J (we write xK = (xk)k∈K for K ⊆ V ).
The model ρ is then defined as a probability measure (called a Gibbs measure) that
is compatible with the given system of local conditional distributions.

The Dobrushin comparison theorem is a tool to bound the total variation difference
between marginals of Gibbs measures in terms of their local conditional distributions.
This tool is what allow us to characterize the crucial way in which the decay of
correlations property enters the local analysis of particle filters in our framework.

Despite being a powerful tool, the Dobrushin comparison theorem requires the
validity of restrictive assumptions, and for most models this fact poses a major
limitation on the applicability of the theorem.

One of the contribution of this thesis is to develop a more general and flexible
machinery that allows us to get more powerful results. By relying on the Dobrushin-
Shlosman [17] and Weitz [64] conditions for uniqueness of Gibbs measures, instead
of the Dobrushin condition employed by the original comparison theorem, the new
comparison theorems that we develop in Chapter 6 provide more flexible tools to
analyze the behavior of algorithms in larger regions of the natural parameter space,
and are of independent interest in statistical mechanics for the analysis of Gibbs
measures.

The novel toolbox is used to extend qualitatively the analysis of the block particle
filter that we initially obtain using the original Dobrushin comparison theorem.

In order to prove the new comparison theorems we develop a methodology that
exploits the connection with a certain type of Markov chains called Gibbs samplers.
The general framework behind our proofs represents a novel contribution in the con-
nection between static Gibbs measures and dynamical Gibbs samplers.
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1.7 Filtering in infinite dimension

Alongside with the quantitative investigation of Gibbs measures and its connection
to filtering algorithms in high dimension, this thesis also deals with the qualitative
understating of conditional ergodicity of Gibbs measures and its connection to the
theory of filtering in infinite dimension.

As previously discussed, both filter stability and decay of correlations are proba-
bilistic properties of the filter distribution that play a crucial role in the development
of particle filters. At first sight, both properties might also seem natural. If we take
filter stability, for instance, it is often the case that the underlying chain (Xn)n≥0

itself is stable, namely,

P(Xn ∈ · |X0) ≈ P(Xn ∈ · ) for n large enough,

and it seems highly likely that if this is the case then also the filter should forget
its initial condition. Moreover, it seems natural that as time n increases the ini-
tial knowledge of X0 is superseded by the information contained in the observations
Y1, . . . , Yn, so that eventually X0 does not affect the filter. However, neither of these
two intuitions is always true.

Understanding the general assumptions that guarantee the inheritance of stability
from the underlying chain to the filter distribution has been a longstanding problem
dating back to the work of Blackwell in 1957 [5] and Kunita in 1971 [33], and it
is related to many areas of probability theory, far beyond the algorithmic setting
considered in this thesis [63, 59].

A general qualitative theory that exhaustively characterizes this phenomenon has
recently been developed by van Handel in 2009 [57], where it is shown that if the
Markov chain (Xn, Yn)n≥0 is stable (in a certain total variation sense), and if a mild
non-degeneracy condition holds for density of the law of Yk given Xk for each k ≥ 0
(essentially requiring the presence of some noise in the observations), then the filter
P(Xn ∈ · |Y1, . . . , Yn) is also stable. This result represents a milestone in the theory
of nonlinear filtering, settling a long dispute in the field.

However, while this result holds in a very general setting and there is no explicit
mention of dimensionality, in practice it can only be applied to finite-dimensional
systems. In fact, on the one hand, if the underlying signal (Xn)n≥0 has an infinite-
dimensional state space, then the ergodicity assumption in total variation can not
be satisfied; on the other hand, if the observations (Yn)n≥0 are infinite-dimensional,
then the non-degeneracy condition can not hold. In [52] it has been shown that
the infinite dimensionality of the underlying signal is not a fundamental issue, and
that the main filter ergodicity result in [57] still holds true, either upon working
with a local notion of convergence in total variation, or upon doing the analysis in
weak convergence, which embodies a form of locality in itself. However, this later
development still requires the same global non-degeneracy assumption as in [57],
which essentially restricts the scope of the theory to finite-dimensional observations.

One of the contribution of this thesis is to develop the first results in filtering
with infinitely many observations, and to show that in this setting completely new
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phenomena can appear. For instance, in Chapter 7 we show that we can have a
completely ergodic infinite-dimensional model (X, Y ), where the underlying system
X is a collection of independent random variables and the structure of the observation
Y is local, and still it is possible for the conditional distribution P(X ∈ · |Y ) to
display a phase transition in the signal-to-noise ratio (see Theorem 7.7 and Example
7.17). That is, as we condition on the observations there is a threshold showing up
such that if the signal-to-noise ratio is below it, then the conditional distribution is
unique; else, the conditional distribution is not unique. This example shows that while
the ergodicity of the underlying process can be localized so to recover the powerful
general result as in [57], localizing the non-degeneracy in the conditional law of the
observations does not help.

Far from being a theoretical point, the understanding of filtering theory in infinite
dimension is crucial for the development of particle filters that can work in practical
applications. In fact, it is well know that the qualitative understanding of infinite-
dimensional models is directly related to the quantitative understanding of finite-
dimensional models (see [50] and [39] for instance).

1.8 Outline of the thesis

This thesis consists of 7 chapters and 4 appendices.
Chapter 1 is the introduction.
Chapter 2 contains a collection of results that are used repeatedly throughout this

thesis. As a large portion of this thesis deals with controlling the distance between
conditional distributions in high dimension, we present a few elementary lemmas that
serve this purpose, along with the main tool that is used in our proofs—the Dobrushin
comparison theorem from statistical mechanics. We also give a brief overview of
Monte Carlo methods, as they are needed to describe the algorithms presented in
the next chapters. The goal of this chapter is to provide the necessary tools that are
needed in the remaining of this thesis, along with establishing the notation that is
used throughout.

Chapter 3 provides an introduction to the classical theory of nonlinear filtering
and sequential Monte Carlo algorithms known as particle filters. Particle filters are
discussed in the light of the curse of dimensionality phenomenon. First, the sequential
importance sampling (SIS) algorithm is introduced, and it is showed how it suffers
from the curse of dimensionality with respect to time. This issue motivates the
introduction of the sequential importance resampling (SIR) algorithm, for which time-
uniform error bounds can be proved. The notion of filter stability plays a central role
in establishing bounds that do not depend on time. Nonetheless, it is showed that
both algorithms still suffer from the curse of dimensionality with respect to the spatial
dimension of the model. This discussion paves the way for the introduction of local
particle filters that is developed in the next two chapters. The treatment of the
material presented in this chapter is inspired by [55] and [8].

Chapter 4 introduces the block particle filter and shows how this algorithm over-
comes the curse of dimensionality by yielding errors bounds that are uniform both
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in time and in space. More generally, this chapter introduces the class of high-
dimensional filtering models that we consider in this thesis, and it illustrates how
the Dobrushin comparison theorem can be used to perform a local analysis in these
models. Emphasis is given to the decay of correlations property, which is seen to
be the key to establish spatially-uniform error bounds, thus representing the spa-
tial counterpart of filter stability. It is showed how decay of correlations can be
exploited algorithmically by introducing a regularization step (marginalization over
non-overlapping blocks) to the basic formulation of the SIR algorithm. The analysis
of the block particle filter is instrumental to developing a general framework that
can encompass other algorithms (that is, other forms of regularization), such as the
one proposed in the next chapter. To facilitate the reading, the proofs of the results
presented in this chapter are included in Appendix A. This chapter is based on the
paper [40].

Chapter 5 introduces the localized Gibbs sampler particle filter, another local al-
gorithm that aims at exploiting the decay of correlations property of filtering models
through a form of regularization based on the notion of conditional independence
(rather than on the notion of independence, as for the block particle filter). While a
complete analysis of this algorithm is still missing, we prove a one-step error bound
that illustrates how this algorithm provides spatially homogenous approximations of
the filter distribution, hence overcoming the main drawback of the block particle fil-
ter (the proof is included in Appendix B). The analysis of this algorithm prompts for
the investigation of the decay of correlations in general Markov Chain Monte Carlo
methods, and new challenges arise in this context. The material presented in this
chapter is new and has not been submitted to publication yet.

Chapter 6 is devoted to establishing new comparison theorems for Gibbs measures
that extend the applicability of the original Dobrushin comparison theorem to larger
regions of the phase space. The proof of these results (contained in Appendix C)
is part of a more general framework that is developed to analyze the convergence
behavior of Gibbs samplers, a particular class of Markov chains. As an application,
the new comparison theorems are used to improve qualitatively the analysis of the
block particle filter given in Chapter 4 to handle scenarios where ergodicity in space
and in time are treated on a different footing. This chapter is based on the paper
[41].

Chapter 7 presents some of the first results in the theory of filtering with infinitely-
many observations. The focus of this chapter is complementary to the quantitative
framework previously analyzed in this thesis, mostly in the realm of algorithms. Now
we are interested in the fundamentals of filtering theory in infinite dimension, and
filter stability and decay of correlations are analyzed qualitatively in models with
infinitely-many degrees of freedom. We show that completely new phenomena appear
in this setting: contrarily to the finite-dimensional case, inheritance of ergodicity can
undergo a phase transition in the signal-to-noise ratio. We refer to Appendix D for
the proofs of the results presented in this chapter. The material of this chapter is
taken from the paper [42], which further develops this set of ideas by yielding, for
instance, conditions that guarantee the inheritance of ergodicity.
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Chapter 2

Preliminaries

This chapter is devoted to introducing some elementary concepts and facts in prob-
ability theory that will be needed in what follows. As this thesis ultimately deals
with conditioning, large focus is given to the notion of conditional expectations and
conditional distributions, along with some of their basic properties. Since we will
be mostly concerned with high-dimensional distributions, we present a collection of
tools to control their distances. Emphasis is also given to the Monte Carlo paradigm,
which is the backbone of the first part of this thesis. The material is presented in a
streamlined manner, and no attempt is made at developing a systematic treatment.
This chapter also serves to set the notation being adopted in this thesis.

We assume that the reader is already familiar with measure-theoretic probability
theory at the level of an introductory class on the subject. We refer to [65] for an
agile and beautiful introduction to this material, and to [11] for a comprehensive and
systematic treatment of it.

2.1 Notation and conventions

We begin by establishing some notations and conventions that will be used through-
out.

A function from a measurable space (E,E) to R̄ := [−∞,+∞], or a subset of it, is
E-measurable it if is measurable relative to E and the Borel σ-algebra on R̄. We write
f ∈ E to mean that the function f is E-measurable. We write 1A for the indicator
function on the event A ∈ E. We say that a function is positive if it takes values in
R̄+ := [0,+∞].

When we say that X is a (E,E)-valued random variable with distribution µ, we
mean that there is a probability space (Ω,H,P) in the background so that X is a
random variable taking values on the measurable space (E,E) and

∫
P(dω) f(X(ω)) ≡ E f(X) = µf ≡

∫
µ(dx) f(x)

for any positive E-measurable function f . If X has distribution µ, we write X ∼ µ.
Given a random variable X, we denote by σX the σ-algebra generated by it.
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To keep the use of parentheses at minimum, we write EXY to mean E(XY ).
To avoid pedantry, whenever easily inferred by the context, we will often not specify
the domain where functions are defined, the σ-algebras where events live, and the
σ-algebras involved with the definition of measurable functions. For instance, we will
often say that a probability measure µ on a measurable space (E,E) is defined by
µ(dx), µ(A), or µf , without mentioning that this definition has to hold, respectively,
for each x ∈ E, each A ∈ E, or for each positive E-measurable function f . Often we
will also say that µ is a probability measure on E, when we really mean (E,E).

2.2 Conditioning and Bayes formula

In this thesis we will be primarily interested in the behavior of conditional expecta-
tions and conditional distributions. We presently recall some of the main definitions
and properties that will be needed in what follows. As a large part of this thesis
is devoted to Monte Carlo approximations, emphasis is given to the role of random
variables. As such, results in this section are mainly phrased in terms of random vari-
ables, distribution of random variables, and σ-algebras generated by random variables,
rather than in terms of probability measures and generic σ-algebras.

Definition 2.1 (Conditional expectation). Let X be a R̄-valued random variable, and
let Y be a (F,F)-valued random variable. The conditional expectation of X given Y is
any random variable of the form h(Y ), where h is a R̄-valued F-measurable function,
such that the following holds for any positive F-measurable function f :

Eh(Y )f(Y ) = EXf(Y ).

We use the notation E(X|Y ) to indicate any such random variable h(Y ). We also
write E(X|Y = y) to mean the value that any such function h takes at y ∈ F , that
is, E(X|Y = y) = h(y) (recall that conditional expectations are defined up to almost
surely equivalences).

The conditional expectation of X given Y is the function of Y that provides best
estimates of X in the least square sense, as the following lemma shows.

Lemma 2.2 (Optimality of conditional expectation). Let X be a R̄-valued random
variable, and let Y be a (F,F)-valued random variable. Assume that EX2 < ∞.
Then, the function y ∈ F → h(y) := E(X|Y = y) satisfies

h = arg min
g

E (X − g(Y ))2,

where the minimization is with respect to all R̄-valued measurable functions g such
that E g(Y )2 <∞.

Proof. By the properties of conditional expectations we have

E (X − h(Y ))2 = EX2 + E E(X|Y )2 − 2EXE(X|Y )

= EX2 − E E(X|Y )2 ≤ EX2 <∞.
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It remains to prove that for any measurable function g we have

E (X − h(Y ))2 ≤ E (X − g(Y ))2.

For simplicity, define H := h(Y ) = E[X|Y ] and G := g(Y ). Then,

E (X −H)2 = E (X −G+G−H)2

= E (X −G)2 + E (G−H)2 + 2E((X −G)(G−H))

= E (X −G)2 − E (G−H)2

≤ E (X −G)2,

where we used that, by the properties of conditional expectations,

E (X −G)(G−H) = E E((X −G)(G−H)|Y ) = E E(X − g(Y )|Y )(G−H)

= E (H −G)(G−H) = −E (G−H)2.

Let us recall the definition of transition kernels, which is instrumental for the
definition of conditional distributions given immediately below.

Definition 2.3 (Transition kernel). Let (E,E) and (F,F) be measurable spaces. Let
K be a mapping from E × F into R̄+. Then, K is called a transition kernel from
(E,E) to (F,F) if the following two conditions are satisfied:

(a) the mapping x→ K(x,B) is E-measurable for every set B ∈ F;

(b) the mapping B → K(x,B) is a measure on (F,F) for every x ∈ E.

If K is a transition kernel from (E,E) to (F,F), µ is a probability measure on
(E,E) and f is a (F,F)-measurable function, we use the notation

Kf(x) ≡ Kxf ≡
∫
K(x, dy) f(y),

µKf ≡
∫
µ(dx)K(x, dy) f(y).

Definition 2.4 (Conditional distribution). Let X be an (E,E)-valued random vari-
able, and let Y be a (F,F)-valued random variable. A probability kernel P : F ×E→
[0, 1] which satisfies

Pf(Y ) = E(f(X)|Y )

for every positive E-measurable function is called the conditional distribution of X
given Y . Sometimes we also write P(X ∈ dx|Y ) to mean P (Y, dx).

Remark 2.5 (Random measure). Given a measurable space (E,E), a random mea-
sure µ on (E,E) is a transition kernel from the underlying probability space (Ω,H,P)
to (E,E). We say that a collection of random variables X1, . . . , XN on (E,E) is i.i.d.
coming from the random measure µ on (E,E) if there exists a random variable Y
taking values in some measurable space (F,F) such that the following holds true for
all positive E-measurable functions f1, . . . , fN :

E(f1(X1) · · · fN(XN)|Y ) = E(f1(X1)|Y ) · · ·E(fN(XN)|Y ) = µf1(Y ) · · ·µfN(Y ).
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Given two probability measures µ and ν on a measurable space (E,E), recall the
following definitions. If for each A ∈ E such that ν(A) = 0 we have µ(A) = 0, then µ
is said to be absolutely continuous with respect to ν, and we write µ� ν. If µ� ν
and ν � µ, then µ and ν are said to be equivalent, and we write µ ∼ ν. If there
exists A ∈ E such that µ(A) = 0 and ν(A) = 1, then µ and ν are said to be mutually
singular, and we write µ ⊥ ν.

The following is a key result that relates probability measures that are absolutely
continuous.

Theorem 2.6 (Radon-Nikodym derivative). Let X and Z be (E,E)-valued random
variables with distribution µ and ν respectively. Assume that µ � ν. Then, there
exists a positive E-measurable function dµ

dν
called the Radon-Nikodym derivative such

that
E f(X) = E dµ

dν
(Z) f(Z)

for each positive E-measurable function f .

Proof. We refer to [65] for a proof of such result.

The following is a key result that relates the way absolutely continuous probability
measures behave under conditioning. It is one of the many forms of Bayes formula.

Theorem 2.7 (Bayes formula). Let X and Z be two (E,E)-valued random variables,
and let Y be a (F,F)-valued random variable. Let µ be the distribution of (X, Y ), and
let ν be the distribution of (Z, Y ), with µ� ν. Then, for each positive E-measurable
function f we have

E(f(X)|Y ) =
E(dµ

dν
(Z, Y ) f(Z)|Y )

E(dµ
dν

(Z, Y )|Y )
.

Let Q be the conditional distribution of Z given Y . Then, the conditional distribution
of X given Y is given by the probability kernel P defined as

P (y, dz) =
Q(y, dz) dµ

dν
(z, y)∫

Q(y, dz) dµ
dν

(z, y)
.

Proof. We only prove the statement for conditional expectations, as the statement
for conditional probabilities follows immediately by applying Definition 2.4. Fix a
positive E-measurable function f . First, we prove that

E(dµ
dν

(Z, Y ) f(Z)|Y ) = E(f(X)|Y ) E(dµ
dν

(Z, Y )|Y ).

As the right-hand side is clearly a function of Y , by definition of conditional expec-
tations we only need to prove that

E E(f(X)|Y ) E(dµ
dν

(Z, Y )|Y ) g(Y ) = E dµ
dν

(Z, Y ) f(Z) g(Y )

for every positive (F,F)-measurable function g. In fact, using the properties of con-
ditional expectations and using the Radon-Nikodym theorem (Theorem 2.6) for the
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random variables (X, Y ) and (Z, Y ) we have

E E(f(X)|Y ) E(dµ
dν

(Z, Y )|Y ) g(Y ) = E E(f(X)|Y ) dµ
dν

(Z, Y ) g(Y )

= E E(f(X)|Y ) g(Y )

= E f(X) g(Y )

= E dµ
dν

(Z, Y ) f(Z) g(Y ).

To conclude the proof we only need to prove that

E(dµ
dν

(Z, Y )|Y ) > 0 P-a.s.

Using agan the Radon-Nikodym theorem we get

E 1E( dµ
dν

(Z,Y )|Y )=0(Y ) = E dµ
dν

(Z, Y ) 1E( dµ
dν

(Z,Y )|Y )=0(Y )

= E E(dµ
dν

(Z, Y )|Y ) 1E( dµ
dν

(Z,Y )|Y )=0(Y ) = 0.

As an immediate application of Bayes formula we have the following lemma on the
computation of conditional distributions. While this lemma could be proved using
directly the definition of conditional expectation, we prove it using Bayes formula, as
it is representative of the way Bayes formula will often be used in this thesis.

Lemma 2.8 (Computation of conditional distributions). Let X be an (E,E)-valued
random variable, and let Y be a (F,F)-valued random variable such that for each
positive (E × F,E⊗ F)-measurable function f we have

E f(X, Y ) =

∫
ρ(dx)λ(dy) γ(x, y) f(x, y),

where ρ and λ are probability measures on (E,E) and (F,F) respectively, and γ is a
strictly positive E ⊗ F-measurable function. Then, the conditional distribution of X
given Y is given by the probability kernel P defined as

P (y, dx) =
ρ(dx) γ(x, y)∫
ρ(dx) γ(x, y)

.

Proof. Define the following two probability measures on (E × F,E⊗ F):

µ(dx, dy) := ρ(dx)λ(dy) γ(x, y),

ν(dx, dy) := ρ(dx)λ(dy).

Clearly µ � ν and dµ
dν

= γ. By definition µ is the distribution of (X, Y ). Let Z
be an (E,E)-valued random variable such that ν is the distribution of (Z, Y ). By
independence we immediately find that the conditional distribution of Z given Y is
given by the probability kernel Q defined as

Q(y, dz) = ρ(dz).

Then, by Bayes formula (Theorem 2.7) the result follows immediately.
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2.3 Distances between probability measures

In this thesis we will face the problem of measuring and controlling the distance
between probability measures. To this end, we currently introduce the two main
notions of distance that we will consider, along with some elementary lemmas on
their behavior.

Let (E,E) be a measurable space, and let µ and ν be two (possibly random)
probability measures on it. We define the total variation distance between µ and ν
as

‖µ− ν‖ := sup
f∈E:‖f‖∞≤1

|µf − νf |,

where ‖f‖∞ := supx∈E |f(x)|. We will also need the following distance between
probability measures:

|||µ− ν||| := sup
f∈E:‖f‖∞≤1

√
E (µf − νf)2.

It is easy to verify that ‖ · ‖ and ||| · ||| define two metrics in the space of probability
measures. Both metrics yields numbers between 0 (if µ = ν) and 2 (if µ ⊥ ν). In
fact, if µ ⊥ ν then there exists A ∈ E such that µ(A) = 0 and ν(A) = 1, and choosing
f = 1A− 1Ac , where Ac is the complement of A, we have |µf − νf | = 2. Note that if
µ and ν are not random, then we clearly have |||µ− ν||| = ‖µ− ν‖.

We now present some results in the general setting of (possibly random) proba-
bility measures. These results hold both with respect to the metric ||| · ||| and with
respect to the metric ‖ · ‖ (in the latter case, if the probably measures are random
then these bounds hold for each realization of the randomness).

As we will be interested in conditional distributions, we need to understand how
conditioning affects the distance between measures. Since conditioning introduces
weights on measures (see Bayes formula, Theorem 2.7), we will need the following
lemma.

Lemma 2.9 (Weighted measures). Let µ and ν be (possibly random) probability mea-
sures on a measurable space (E,E), and let g be a real-valued E-measurable func-
tion which is bounded away from zero and infinity, that is, infx∈E g(x) > 0 and
supx∈E g(x) <∞. Define

µg(A) :=

∫
µ(dx) g(x) 1A(x)∫

µ(dx) g(x)
, νg(A) :=

∫
ν(dx) g(x) 1A(x)∫

ν(dx) g(x)
.

Then,

|||µg − νg||| ≤ 2
supx∈E g(x)

infx∈E g(x)
|||µ− ν|||.

The same conclusion holds if the ||| · |||-norm is replaced by the ‖ · ‖-norm.
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Proof. For any real-valued measurable function f we have

µ(gf)

µg
− ν(gf)

νg
=
µ(gf)− ν(gf)

µg
+
ν(gf)

µg
− ν(gf)

νg

=
‖g‖∞
µg

{
µ

(
gf

‖g‖∞

)
− ν

(
gf

‖g‖∞

)}
+
ν(fg)

νg

‖g‖∞
µg

{
ν

(
g

‖g‖∞

)
− µ

(
g

‖g‖∞

)}
.

If we assume that ‖f‖∞ ≤ 1, then we have ‖ gf
‖g‖∞‖∞ ≤ 1 and ν(fg) ≤ ν(g), as g is

positive. As ‖ g
‖g‖∞‖∞ ≤ 1 and µg ≥ infx g(x), the proof follows immediately by using

the triangle inequality for the metric ||| · ||| or for the metric ‖ · ‖.

A collection of random variables (Xn)n≥0 taking values in a measurable space
(E,E) is a Markov chain if there exists a transition kernel P from (E,E) to (E,E)
such that for each n ≥ 1 and each A ∈ E we have

P(Xn ∈ A|X0, . . . , Xn) = P (Xn−1, A).

In this thesis we will be mostly interested in stochastic systems that can be described
as Markov chains. Hence, we need to understand how the Markovian dynamics affects
the distance between probability measures. The so-called minorization condition rep-
resents a strong condition that causes Markov chains to forget their initial condition
at a geometric rate, as the following lemma shows.

Lemma 2.10 (Minorization condition for Markov chains). Let µ and ν be (possibly
random) probability measures on a measurable space (E,E) and let P be a transition
kernel from (E,E) to (E,E). Then,

|||µP − νP ||| ≤ |||µ− ν|||.

If there exist a probability measure ρ on (E,E) and ε > 0 such that P satisfies the
following minorization condition

P (x,A) ≥ ερ(A) for each x ∈ E, A ∈ E,

then
|||µP − νP ||| ≤ (1− ε) |||µ− ν|||.

The same conclusions hold if the ||| · |||-norm is replaced by the ‖ · ‖-norm.

Proof. The conditions f ∈ E, ‖f‖∞ ≤ 1 clearly imply Pf ∈ E, ‖Pf‖∞ ≤ 1. The first
statement of the lemma follows immediately:

|||µP − νP ||| = sup
f∈E:‖f‖∞≤1

√
E (µPf − νPf)2 ≤ |||µ− ν|||.

To prove the second statement, define

K(x,A) :=
P (x,A)− ερ(A)

1− ε
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for each x ∈ E,A ∈ E. By the minorization condition it is easy to verify that K is a
transition kernel. As

µP − νP = (1− ε)(µK − νK),

proceeding as above we get

|||µP − νP ||| = (1− ε) sup
f∈E:‖f‖∞≤1

√
E (µKf − νKf)2 ≤ (1− ε)|||µ− ν|||.

The same argument holds with the ‖ · ‖-norm.

Under the minorization condition the map µ → µP is a strict contraction in the
||| · ||| norm. This implies that a Markov chains is geometrically ergodic: the difference
of the law of the Markov chain started at two initial measures decays geometrically
in time, namely,

|||µP n − νP n||| ≤ (1− ε)n |||µ− ν|||.

2.4 Distances between probability measures in

high dimension

In this thesis we will be interested in the behavior of probability measures in high
(possibly infinite) dimension. The canonical description of a high-dimensional random
system is provided by specifying a probability measure ρ on a (possibly infinite)
product space E =

∏
i∈I E

i: each site i ∈ I represents a single degree of freedom,
or dimension, of the model. When I is defined as the set of vertices of a graph,
the measure ρ defines a graphical model or a random field. Models of this type are
ubiquitous in statistical mechanics, combinatorics, computer science, statistics, and
in many other areas of science and engineering.

Let ρ and ρ̃ be two such models that are defined on the same space E. We ask
the following basic question: when is ρ̃ a good approximation of ρ? As briefly seen in
the previous section, probability theory provides numerous methods to evaluate the
difference between arbitrary probability measures. However, the high-dimensional
setting brings some specific challenges: any approximation of practical utility in high
dimension must yield error bounds that do not grow, or at least grow sufficiently
slowly, in the model dimension d = card I. We therefore seek quantitative meth-
ods that allow to establish dimension-free bounds on high-dimensional probability
distributions.

The Dobrushin comparison theorem that we are about to introduce is a power-
ful (albeit blunt) tool to bound the total variation distance between marginals of
high-dimensional probability measures ρ and ρ̃ in terms of their local conditional
distributions. This method was developed by Dobrushin in [18, Theorem 3] in the
context of statistical mechanics. Presently we introduce this tool in its simplified
form, which is due to Föllmer [24] and has become standard textbook material, cf.
[27, Theorem 8.20] and [45, Theorem V.2.2].1 Despite the crucial importance that this

1 Note that our definition of ‖ · ‖J differs by a factor 2 from that in [27].
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theorem has for the results that will be developed in this thesis, we refer to Chapter
6 for its proof (see Section 6.3.1 in particular). In fact, one of the goal of Chapter 6
is precisely to develop a more general version of this comparison theorem.

Define the coordinate projections X i : x 7→ xi for x ∈ E an i ∈ I. For any
probability ρ on E, we fix a version ρi· of the regular conditional probability

ρix(A) := ρ(X i ∈ A|XI\{i} = xI\{i}).

We also define for J ⊆ I the local total variation distance

‖ρ− ρ′‖J := sup
f∈SJ :|f |≤1

|ρ(f)− ρ′(f)|,

where SJ is the class of measurable functions f : E → R̄ such that f(x) = f(z)
whenever xJ = zJ . For J = I, we write ‖ρ− ρ′‖ for simplicity.

Theorem 2.11 (Dobrushin comparison theorem). Let ρ, ρ̃ be probability measures on
E. Define

Cij =
1

2
sup

x,z∈E:xI\{j}=zI\{j}
‖ρix − ρiz‖, bj = sup

x∈E
‖ρjx − ρ̃jx‖.

Suppose that the Dobrushin condition holds:

max
i∈I

∑

j∈I

Cij < 1.

Then the matrix sum D :=
∑

n≥0C
n is convergent, and we have for every J ⊆ I

‖ρ− ρ̃‖J ≤
∑

i∈J

∑

j∈I

Dijbj.

The Dobrushin comparison theorem can be informally interpreted as follows. Cij
measures the degree to which a perturbation of site j directly affects site i under the
distribution ρ. However, perturbing site j might also indirectly affect i: it could affect
another site k which in turn affects i, etc. The aggregate effect of a perturbation of
site j on site i is captured by the quantity Dij. If Dij decays exponentially in the
distance d(i, j) (which is a useful manifestation of the decay of correlations property
that we will often encounter in this thesis), then Theorem 2.11 yields, for example,
‖ρ− ρ̃‖i .

∑
j e
−d(i,j)bj, where bj measures the local error at site j between ρ and ρ̃

(in terms of the conditional distributions ρj· and ρ̃j· ).
In many applications it is natural to describe high-dimensional probability distri-

butions in terms of local conditional probabilities of the form ρix. This is in essence
a static picture, where we describe the behavior of each coordinate i given that the
configuration of the remaining sites I\{i} is frozen. In models that possess dynamics,
this description is not very natural. In this setting, each site i ∈ I occurs at a given
time τ(i), and its state is only determined by the configuration of sites j ∈ I in the
past and present τ(j) ≤ τ(i), but not by the future. It is therefore interesting to note
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that the original comparison theorem of Dobrushin [18] is actually more general than
Theorem 2.11 in that it is applicable both in the static and dynamic settings. We
presently state the one-sided counterpart to Theorem 2.11, and we refer to Chapter
6 for a more general version of this result and for its proof (see Section 6.3.3).

Assume that we are given a function τ : I → Z that assigns to each site i ∈ I an
integer index τ(i). Define

I≤i := {j ∈ I : τ(j) ≤ i}.

For any probability ρ on E, we fix a version γi· of the regular conditional probability

γix(A) := ρ(X i ∈ A|XI≤τ(i)\{i} = xI≤τ(i)\{i}).

We can now state the one-sided Dobrushin comparison theorem.

Theorem 2.12 (One-sided Dobrushin comparison theorem). Let ρ, ρ̃ be probability
measures on E. Define

Cij =
1

2
sup

x,z∈E:xI\{j}=zI\{j}
‖γix − γiz‖, bj = sup

x∈E
‖γjx − γ̃jx‖.

Suppose that the Dobrushin condition holds:

max
i∈I

∑

j∈I

Cij < 1.

Then the matrix sum D :=
∑

n≥0C
n is convergent, and we have for every J ⊆ I

‖ρ− ρ̃‖J ≤
∑

i∈J

∑

j∈I

Dijbj.

Note that the one-sided comparison theorem can be interpreted as a generalization
of Theorem 2.11 (just take τ to be a constant function). However, we stated two
different theorems to stress the difference between the static and dynamic case. Both
theorems will play a crucial role in this thesis.

In order to use these comparison theorems we must be able to bound the quantities
Cij and bj. The elementary lemmas introduced in Section 2.3 will be used precisely
for this purpose. We presently introduce a lemma that will be essential for bounding
the matrix D coming from the comparison theorems. This result states that if Cij
decays exponentially in the distance between i and j at a sufficiently rapid rate, then
Dij will also decay exponentially in the distance between i and j. It is essentially a
simple lemma about matrices.

Lemma 2.13. Let I be a finite set and let m be a pseudometric on I. Let C =
(Cij)i,j∈I be a matrix with nonnegative entries. Suppose that

max
i∈I

∑

j∈I

em(i,j)Cij ≤ c < 1.
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Then the matrix D =
∑

n≥0C
n satisfies

max
i∈I

∑

j∈I

em(i,j)Dij ≤
1

1− c.

In particular, this implies that

∑

j∈J

Dij ≤
e−m(i,J)

1− c

for every J ⊆ I.

Proof. Define for any matrix A with nonnegative entries the norm

‖A‖m := max
i∈I

∑

j∈I

em(i,j)Aij.

Using m(i, j) ≤ m(i, k) +m(k, j), we compute

‖AB‖m = max
i∈I

∑

j∈I

em(i,j)
∑

k∈I

AikBkj

≤ max
i∈I

∑

k∈I

em(i,k)Aik
∑

j∈I

em(k,j)Bkj

≤ ‖A‖m‖B‖m,

so ‖A‖m is a matrix norm. Therefore,

‖D‖m ≤
∑

n≥0

‖C‖nm ≤
∑

n≥0

cn =
1

1− c.

As
em(i,J)

∑

j∈J

Aij ≤
∑

j∈J

em(i,j)Aij ≤ ‖A‖m,

the last statement of the lemma follows immediately.

In the remainder of this section we present two simple results that are meant to
illustrate the models that we will consider in this thesis.

Often we will state the general fact that “probability measures tend to be sin-
gular in high (or infinite) dimension.” The following proposition exhibits a concrete
manifestation of this general fact.

Proposition 2.14. Let (E,E) be a measurable space and let µ and ν be two probability
measures on it. Define the following product measures on (EN,EN):

µ⊗ :=
⊗

n∈N

µ, ν⊗ :=
⊗

n∈N

ν.

If µ 6= ν then µ⊗ ⊥ ν⊗.
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Proof. Let (Ω,H,P) be a probability space, and let (Xn)n∈N and (Yn)n∈N be two
collections of i.i.d. random variables taking values in (E,E), such that Xn ∼ µ and
Yn ∼ ν for each n ∈ N. As µ 6= ν, there exists A ∈ E such that µ(A) 6= ν(A). Define

B :=

{
z = (z1, z2, . . .) ∈ EN : lim

N→∞

1

N

N∑

n=1

IA(zn) = µ(A)

}
.

By the law of large numbers we have

µ⊗(B) = P

({
ω ∈ Ω : lim

N→∞

1

N

N∑

n=1

IA(Xn(ω)) = µ(A)

})
= 1,

ν⊗(B) = P

({
ω ∈ Ω : lim

N→∞

1

N

N∑

n=1

IA(Yn(ω)) = µ(A)

})
= 0.

Proposition 2.14 attests that unless two measures µ and ν are the same, their
infinite products µ⊗ and ν⊗ are mutually singular. This example illustrates the
fundamental reason why a global analysis of high-dimensional models is not suitable to
properly describe these models. On the other hand, these models can be meaningfully
interpreted by looking at local quantities. To see this, consider the case ‖µ − ν‖ =
ε � 1. Then, for J ⊂ I a telescoping argument easily gets ‖µ⊗ − ν⊗‖J ≤ ε card J ,
whereas the global total variation bound yields ‖µ⊗ − ν⊗‖ = 2. By bounding the
local total variation distance over subsets of coordinates in terms of local quantities
(the conditional distributions of each coordinate given all the others), the Dobrushin
comparison theorem represents the key tool that will be used in this thesis to perform
a local analysis in high-dimensional models.

While infinite-dimensional probability measures can be equivalent, they can differ
significantly only on a finite number of coordinates, as the following example taken
from [44, Chapter 9] illustrates.

Example 2.15. For each a ∈ R, let χa be the distribution of a Gaussian random
variable in R with mean a and variance 1. Given two sequences (an)n∈N and (bn)n∈N,
define the following product measures on RN:

µ⊗ :=
⊗

n

χan , ν⊗ :=
⊗

n

χbn .

Then, µ⊗ ∼ ν⊗ if and only if
∑

n∈N(an − bn)2 <∞.

This example tells us that in order to be equivalent infinite-dimensional probability
measures can only have finitely many degrees of freedom that can carry significant
information. While such cases represent respectable infinite-dimensional models, for
the sake of the results developed in this thesis we think of them as being effectively
finite-dimensional. On the other hand, in this thesis we will be interested in models
that are genuinely infinite-dimensional, in the sense that they are constituted by
infinitely-many independent degrees of freedom.
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2.5 Monte Carlo

Given a measurable space (E,E) and a (possibly random) probability measure µ
on it (perhaps known only up to a normalization factor), in this thesis we will be
interested in the problem of approximating integrals of the form µf =

∫
µ(dx)f(x),

for a suitable class of R̄-valued E-measurable functions f . The Monte Carlo approach
consists in approximating µf with the sample mean of f under µ. If µ is not random,
this means:

µf = E f(X) ≈ 1

N

N∑

i=1

f(X(i)),

where X ∼ µ, and X(1), . . . , X(N) are i.i.d. random variables (samples) with distri-
bution µ, for a certain N ≥ 1. On the other hand, if µ is random this means:

µf ≡ µf(Y ) = E(f(X)|Y ) ≈ 1

N

N∑

i=1

f(X(i)),

where Y is the random variable through which the randomness in µ comes, as pre-
scribed by Remark 2.5.

It is convenient to introduce the following sampling operator on probability mea-
sures (δx denotes the Dirac measure with mass located at x ∈ E).

Definition 2.16 (Sampling operator). Let µ be a (possibly random) probability mea-
sure on (E,E). Define the sampling operator SN as

SNµ :=
1

N

N∑

i=1

δX(i), X(1), . . . , X(N) are i.i.d. samples ∼ µ.

As SNµ is defined in terms of (possibly conditionally, cf. Remark 2.5) i.i.d. random
variables, there are a lot of results to assess the accuracy of (SNµ)f as an estimate of
µf . In particular, as N goes to infinity the strong Law of Large Numbers tells us that
(SNµ)f converges almost surely to µf , while the Central Limit Theorem tells us that√
N {(SNµ)f−µf} converges in distribution to a Gaussian with mean 0 and variance

µf 2 − (µf)2. Non-asymptotic results can also be easily obtained, such as bounds on
tail probabilities P{|(SNµ)f − µf | ≥ t}, for t ≥ 0, and bounds on error moments
E |(SNµ)f − µf |p, for p ≥ 1. We presently prove a result for the case p = 2, as this
will be used repeatedly in this thesis. We refer to [8] for a systematic collection of
these results.

Let us first recall the bias/variance decomposition of the mean square error, which
is one of the most analytically tractable measure of the quality of an estimator:

E ((SNµ)f − µf)2 = E ((SNµ)f − E(SNµ)f)2

︸ ︷︷ ︸
variance

+
[
E (SNµ)f − µf

]2
︸ ︷︷ ︸

bias2

.

Clearly, (SNµ)f is an unbiased estimator for each N ≥ 1, as E (SNµ)f = µf. As
for the variance of the estimator, we have the following lemma.
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Lemma 2.17 (Monte Carlo variance). Let µ be a random probability measures on
(E,E), and let Y as in Remark 2.5. For each positive E-measurable function f we
have

E
(
((SNµ)f − µf)2|Y

)
=

1

N

{
µ(f 2)− (µf)2

}
.

As a consequence,

|||SNµ− µ||| ≤ 1√
N
.

Proof. Note that

((SNµ)f − µf)2 = (µf)2 − 2
µf

N

N∑

i=1

f(X(i)) +
1

N2

N∑

i=1

(f(X(i)))2

+
1

N2

∑

i,j∈{1,...,N}
i 6=j

f(X(i)) f(X(j)).

By definition of the samples X(1), . . . , X(N) (see also Remark 2.5) and by the prop-
erties of conditional expectations (recall that µf is σY -measurable), we have

E
(
((SNµ)f − µf)2|Y

)
= (µf)2 − 2 (µf)2 +

1

N
µ(f 2) +

N − 1

N
(µf)2

=
1

N

{
µ(f 2)− (µf)2

}
,

and the statement follows immediately.

The Monte Carlo approximation scheme introduced above is practicable only when
it is possible (and computationally convenient) to sample from the distribution µ
itself, the so-called target distribution. More generally, there are situations where it
is more convenient to sample from another distribution ν on (E,E), which is then
referred to as the importance distribution (or proposal distribution). The importance
sampling paradigm is based on the idea that we can approximate µf using samples
coming from ν. In fact, if µ � ν then the Radon-Nikodym theorem (Theorem 2.6)
yields

µf = E f(X) = E dµ
dν

(Z) f(Z) ≈ 1

N

N∑

i=1

dµ
dν

(Z(i)) f(Z(i)),

where X ∼ µ, Z ∼ ν, and Z(1), . . . , Z(N) are i.i.d. samples with distribution ν.
More generally, in this thesis we will deal with situations where the target dis-

tribution µ, or the instrumental distribution ν, or both, are only known up to a
scalar factor. In this case also the Radon-Nikodym derivative dµ

dν
is also known up to

a constant factor. Nonetheless, the importance sampling paradigm can still be im-
plemented by considering the following approximation where constant factors cancel
out:

µf = E f(X) = E dµ
dν

(Z) f(Z) =
E dµ

dν
(Z) f(Z)

E dµ
dν

(Z)
≈
∑N

i=1
dµ
dν

(Z(i)) f(Z(i))
∑N

i=1
dµ
dν

(Z(i))
,
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where X ∼ µ, Z ∼ ν, Z(1), . . . , Z(N) are i.i.d. samples with distribution ν, and
we have used that E dµ

dν
(Z) = µ(E) = 1. The self-normalized importance sampling

paradigm will be used in Chapter 3 to describe the basic algorithms upon which much
of the work in this thesis is based. For this reason, we introduce a sampling operator
also for this case.

Definition 2.18 (Self-normalized importance sampling operator). Let µ, ν be (pos-
sibly random) probability measures on (E,E) such that µ � ν. Define the self-
normalized importance sampling operator SNν as

SNν µ :=
N∑

i=1

W (i) δZ(i), Z(1), . . . , Z(N) are i.i.d. samples ∼ ν,

where the weights W (1), . . . ,W (N) are defined as

W (i) :=
dµ
dν

(Z(i))
∑N

`=1
dµ
dν

(Z(`))
.

Clearly, we have SNµ µ = SNµ. Consistency and asymptotic normality are easy

to prove, and now
√
N {(SNµ)f − µf} converges in distribution to a Gaussian with

mean 0 and variance E (dµ
dν

(Z) (f(Z) − µf))2, Z ∼ ν. The self-normalize estimate
(SNν µ)f is biased for any fixed value of N , and establishing non-asymptotic results
is not as straightforward as for the ordinary Monte Carlo approximation. We refer
again to [8] for details.
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Chapter 3

Classical nonlinear filtering and
particle filters

This chapter provides an overview of the classical theory of nonlinear filtering and
sequential Monte Carlo algorithms known as particle filters. Emphasis is given to
the stability property of the filter distribution, which is the key to establish time-
uniform error bounds for particle filters. The treatment revolves around the curse
of dimensionality phenomenon, and the coverage is instrumental to the content that
will be developed in Chapter 4 and Chapter 5. The presentation is inspired by [55]
and [8].

3.1 Hidden Markov models and nonlinear filter

Let (X,X) and (Y,Y) be two Polish spaces. We define a hidden Markov model as
a (X× Y,X⊗ Y)-measurable Markov chain (Xn, Yn)n≥0 whose transition probability
kernel K can be factored as

Kf(x, y) =

∫
p(x, x′) g(x′, y′)ψ(dx′)ϕ(dy′) f(x′, y′),

for each x ∈ X, y ∈ Y and each X⊗ Y-measurable function f . Thus, (Xn)n≥0 is itself
a Markov chain in (X,X) with transition density p : X × X → R̄+ with respect to
a given reference measure ψ, while (Yn)n≥0 are random variables in (Y,Y) that are
conditionally independent given (Xn)n≥0 with transition density g : X × Y → R̄+

with respect to a reference measure ϕ. This dependency structure is illustrated in
Figure 3.1. We interpret (Xn)n≥0 as an underlying dynamical process—the signal—
that is not directly observable, while the observable process (Yn)n≥0 consists of partial
and noisy observations of (Xn)n≥0. The hidden Markov model setting is convenient
mathematically and is ubiquitous in practice as a model of noisy observations of
random dynamics.

In the following we will assume that the process (Xn, Yn)n≥0 is realized on its
canonical probability space, and denote for any probability measure µ on (X,X) by
Pµ the probability measure under which (Xn, Yn)n≥0 is a hidden Markov model with
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Yn−1 Yn Yn+1

// Xn−1

g

OO

p
// Xn

g

OO

p
// Xn+1

g

OO

//

Figure 3.1: Dependency graph of a hidden Markov model.

transition probability P as above and with initial condition X0 ∼ µ (if we simply write
P, then it means that any choice of the initial measure would yield equivalent results
for the argument being considered). For x ∈ X, we write for simplicity Px := Pδx .
As the process (Xn)n≥0 is unobservable, a central problem in this setting is to track
the unobserved state Xn given the observation history Y1, . . . , Yn: that is, we aim to
compute the nonlinear filter

πµn := Pµ(Xn ∈ · |Y1, . . . , Yn).

Filtering—the computation of the conditional distributions of a hidden Markov
process given observed data—is a problem that arises in a wide array of applications
in science and engineering, classically in the field of tracking, speech recognition, and
finance. We refer to [8] for a rich list of applications.

Remark 3.1 (A matter of notation). To be precise, given our definition of conditional
distributions (Definition 2.4), we should write πµn(Y1:n, · ) instead of πµn. However, in
what follows we only use the kernel notation πµn(y1:n, dx) to emphasize the dependence
of the filter on a particular sequence of observations Y1:n = y1:n. Hence, we interpret
πµn as a random measure whose randomness is (implicitly) provided by the observations
Y1, . . . , Yn.

Being a conditional distribution, the filter yields least mean square estimates, and
for this reason it is often referred to as the optimal filter.

Lemma 3.2 (Optimality of the filter). Fix n ≥ 0. Let f be a measurable function
such that Eµ f(Xn)2 <∞. Then,

πµnf = arg min
h

Eµ (f(Xn)− h(Y1:n))2,

where the minimization is over measurable functions h.

Proof. It follows immediately from Lemma 2.2, choosing X = f(Xn) and Y =
(Y1, . . . , Yn).

If the conditional distribution πn can be computed, it yields not only a least mean
square estimate of the unobserved state Xn, but also a complete representation of the
uncertainty in this estimate.

An important property of the filter is that it can be computed recursively, which
follows immediately from Bayes formula (Lemma 2.8).
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Lemma 3.3 (Filter recursion). The filter distribution πµn can be computed recursively
according to

πµnf =

∫
πµn−1(dx) p(x, x′)ψ(dx′) g(x′, Yn) f(x′)∫
πµn−1(dx) p(x, x′)ψ(dx′) g(x′, Yn)

.

with the initial condition πµ0 = µ.

Proof. Fix n ≥ 0. By construction X0:n has distribution ρ given by

ρ(dx0:n) := Pµ(X0:n ∈ dx0:n) = µ(dx0) p(x0, x1)ψ(dx1) · · · p(xn−1, xn)ψ(dxn).

Define the provability measure λ on (Yn,Yn) as

λ(dy1:n) := ϕ(dy1) · · ·ϕ(dyn),

and define the positive function γ as

γ(x1:n, y1:n) := g(x1, y1) · · · g(xn, yn).

By construction we have

Eµ f(X0:n, Y1:n) =

∫
ρ(dx0:n)λ(dy1:n) γ(x1:n, y1:n) f(x0:n, y1:n)

for each positive measurable function f . By Bayes formula (Lemma 2.8) we have that
the conditional distribution of X0:n given Y1:n is given by the probability kernel P
defined as

Pf(Y1:n) =

∫
Pµ(X0:n ∈ dx0:n|Y1:n) f(x0:n) =

∫
ρ(dx0:n) γ(x0:n, Y1:n) f(x0:n)∫

ρ(dx0:n) γ(x0:n, Y1:n)
.

It is immediately verified that

πµnf =

∫
P (Y1:n, dx0:n) f(xn) =

∫
ρ(dx0:n) γ(x0:n, Y1:n) f(xn)∫
ρ(dx0:n) γ(x0:n, Y1:n)

=

∫
πµn−1(dx) p(x, x′)ψ(dx′) g(x′, Yn) f(x′)∫
πµn−1(dx) p(x, x′)ψ(dx′) g(x′, Yn)

.

The recursive structure of the nonlinear filter is of central importance, as it allows
the filter to be computed on-line over a long time horizon. Nonetheless, the recur-
sion is still at the level of probability measures, and in general no finite-dimensional
sufficient statistics exist. Important exceptions are two special cases: linear Gaussian
models (which give rise to the celebrated Kalman filter) and models with a (small)
finite state space, cf. [8]. However, most complex models do not fall into these very
limited categories. Therefore, the practical implementation of nonlinear filters typ-
ically proceeds by sequential Monte Carlo approximations known as particle filters.
We refer to [19] for a survey on these methods. In the present context we limit ourself
to describe, in their basic formulations, the main two algorithms that have been con-
sidered in the filtering literature. We present these algorithms in the light of the curse
of dimensionality phenomenon that affects both of them, which will be instrumental
for the material developed in Chapter 4 and Chapter 5.
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3.2 Sequential importance sampling

One of the first Monte Carlo algorithm that was used to approximate the filter distri-
bution is the sequential importance sampling (SIS) particle filter. The introduction
of this algorithm can be traced back to the pioneering work of Handschin and Mayne
in 1969 [30]. The idea behind the SIS algorithm is to apply the self-normalized im-
portance sampling paradigm introduced in Section 2.5 to approximate the so-called
smoothing distribution Pµ(X0:n ∈ · |Y1:n), and then compute the marginal at time n
to approximate the filter πµn = Pµ(Xn ∈ · |Y1:n).

To see how the SIS works, fix n ≥ 1 and assume that we are given the observations
Y1, . . . , Yn. Our goal is to approximate integrals with respect to the (random) measure
πµn. From the proof of Lemma 3.3 we know that the conditional distribution of X0:n

given Y1:n is given by the kernel P defined as

P (Y1:n, dx0:n) := Pµ(X0:n ∈ dx0:n|Y1:n) =
1

Z

∫
ρ(dx0:n) g(x1, Y1) · · · g(xn, Yn),

where

ρ(dx0:n) := Pµ(X0:n ∈ dx0:n) = µ(dx0) p(x0, x1)ψ(dx1) · · · p(xn−1, xn)ψ(dxn)

and

Z :=

∫
ρ(dx0:n) g(x1, Y1) · · · g(xn, Yn). (3.1)

At first sight, we might think of using straightforwardly the Monte Carlo approxima-
tion (recall the definition of the sampling operator SN , Definition 2.16)

πµnf(Y1:n) ≈
∫

(SNPY1:n)(dx0:n) f(xn) =
1

N

N∑

i=1

f(Xn(i)),

where, for each i ∈ {1, . . . , N}, X(i) := (X0(i), . . . , Xn(i)) is an independent sample
from the distribution PY1:n (conditionally independent given Y1, . . . , Yn, see Remark
2.5). Of course, the problem with this approach is that in general we do not know how
to sample from PY1:n . However, by construction it is usually easy to sample from the
signal Markov chain (Xn)n≥0. This is the case, for instance, if the signal is modeled
as a recursion

Xn = h(Xn−1, ξn), n ≥ 1,

where (ξn)n≥1 are i.i.d. random variables having a distribution that can be efficiently
sampled (for instance, the uniform distribution or the Gaussian distribution), and h
is a non-random function that we know pointwise. In this case, in fact, we can sample
Xn ∼ p(xn−1, · )ψ by sampling ξn first, and then computing Xn = h(xn−1, ξn).
This fact suggests to use importance sampling choosing ρ as importance distribution
and PY1:n as target distribution. The Radon-Nikodym derivative reads

dPY1:n

dρ
(x0:n) =

1

Z
g(x1, Y1) · · · g(xn, Yn).
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Since the normalization constant Z is not easy to compute (else, again, computing
the filter distribution would not be a problem in the first place), then we apply the
self-nomalized importance sampling operator SNρ (Definition 2.18) to get

πµnf(Y1:n) ≈
∫

(SNρ PY1:n)(dx0:n) f(xn) =
N∑

i=1

Wn(i) f(Xn(i)),

where for each i ∈ {1, . . . , N} we have

Wn(i) :=
g(X1(i), Y1) · · · g(Xn(i), Yn)∑N
`=1 g(X1(`), Y1) · · · g(Xn(`), Yn)

and X(i) := (X0(i), . . . , Xn(i)) is an independent sample from the distribution ρ.
Note that the weights Wn(1), . . . ,Wn(N) are positive and they sum to 1, and they
depend on the (random) observation sequence Y1, . . . , Yn. So, the SIS particle filter
approximation at time n is given by

π̄µn(dxn) :=

∫

x0:n−1∈Xn
(SNρ PY1:n)(dx0:n) =

N∑

i=1

Wn(i) δXn(i)(dxn).

A key observation is that the weights can be computed recursively, namely,

Wn(i) ∝ Wn−1(i) g(Xn(i), Yn), W0(i) = 1/N, (3.2)

where the proportionality is up to the normalization factor so that
∑N

i=1Wn(i) = 1.
This fact suggests that the SIS particle filter can be implemented in an on-line fashion,
as described in Figure 3.2. Figure 3.3 illustrates a typical iteration of the algorithm.

Algorithm 1: SIS particle filter

Data: Fix n,N ≥ 1. Let the observations Y1, . . . , Yn be given.
Sample X0(i), i = 1, . . . , N from the initial distribution µ;
Set W0(i) = 1/N , i = 1, . . . , N ;
for k = 1, . . . , n do

Sample i.i.d. Xk(i) ∼ p(Xk−1(i), · ) dψ, i = 1, . . . , N ;

Compute Wk(i) = Wk−1(i) g(Xk(i), Yk)/
∑N

`=1 Wk−1(`) g(Xk(`), Yk),
i = 1, . . . , N ;

Let π̄µn =
∑N

i=1Wn(i) δXn(i);
Compute the approximate filter πµnf ≈ π̄µnf .

Figure 3.2: The classical sequential importance sampling (SIS) particle filter.

For any fixed time n ≥ 1, the quality of the estimates obtained by the SIS particle
filter as a function of the number of particles N can be easily assessed by the general
theory on self-normalized importance sampling, see Section 2.5. In particular, the
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SIS particle filter does indeed approximate the exact nonlinear filter as N goes to
infinity with the typical Monte Carlo 1/

√
N -rate for the mean-square error, namely,

√
E (πµnf − π̄µnf)2 ≤ Cn√

N
,

where Cn is a constant that depends on time n.

SIS

Each iteration of the ordinary particle filter (SIR) looks like this (N = 6):

Y n!

⇡̂n =

NX

i=1

wn(i) �x(i), wn(i) =
g(x(i), Yn)

PN
i=1 g(x(i), Yn)

, (x(i))i=1,...,N ⇠ P⇡̂n�1.

Patrick Rebeschini (Princeton University) Particle filters and curse of dimensionality February 21, 2014 1 / 4

⇡̄n�1 ⇡̄n

(a) (b) (c)

Level sets of
likelihood function
x �! g(x, Yn)

Figure 3.3: Representation of a single iteration of the SIS particle filter in the
case when the state and observation spaces are X = Y = R2

+, and when there are
N = 6 particles considered by the algorithm. Each particle is represented by a blue
ball, whose size is proportional to the weight of the particle. (a) Representation
of π̄n−1. (b) Particles are propagated forward using the underlying dynamics. (c)
Particles are reweighed according to the likelihood of the new observation at time
n (whose level sets are drawn in orange) yielding π̄n, following the multiplicative
weight recursion (3.2).

3.2.1 Sample degeneracy with time

The SIS algorithm is a sequential implementation of the general importance sampling
paradigm (“sequential” in the sense that there is no need of regenerating the popu-
lations of samples from scratch at the arrival of new observations). It turns out that
importance sampling is usually very inefficient in high-dimensional models, so that
the SIS particle filter performs poorly as time increases. The issue comes from the fact
that importance sampling employs a finite number of samples from Pµ(X0:n ∈ · ) to
approximate the target distribution Pµ(X0:n ∈ · |Y1:n), and the approximation does
not work well if the two distributions are too far apart, which is what happens if time
n is large. In practice the SIS algorithm fails because the distribution of the weights
Wn(1), . . . ,Wn(N) degenerates as time n increases, and essentially only one particle
is left with a non-zero weight after a few time steps (recall that at each time step
the the weights sum to 1 by construction). This phenomenon is known as collapse or
sample/weight degeneracy. The following example clarifies this issue.
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Example 3.4 (Weight degeneracy of SIS with time). In the framework introduced in
Section 3.1, consider the hidden Markov model where (Xn)n≥0 is a symmetric random
walk in Z2 with X0 = x ∈ Z2, and for each n ≥ 1 we have Yn = Xn+εηn, where ε ∈ R+

and (ηn)n≥0 is a collection of i.i.d. random variables having the standard Gaussian
distribution in R2 (zero mean and identity covariance matrix). If the signal-to-noise
ratio is high, that is, if ε is very close to 0, then we expect the smoothing distribution
Px(X0:n ∈ · |Y1:n) to be very concentrated around X0:n, the true location of the path
of the signal up to time n. However, if we sample N particles from the distribution
Px(X0:n ∈ · ), where each particle represents a path of n steps of the symmetric
random walk, then only a fraction of the particles will be close to any given trajectory
in Z2, and the problem clearly gets worse as time increases.

The phenomenon of weight degeneracy of the SIS algorithm with time has been
analyzed in various settings. The following example (adapted from Example 7.3.1 in
[8]) analyzes the poor performance of the SIS algorithm asymptotically (in the limit
N →∞) as time increases.

Example 3.5 (Exponential growth of the SIS asymptotic variance with time). In
the general framework introduced in Section 3.1, consider the hidden Markov model
where (Xn)n≥0 is a product of i.i.d. random variables with distribution µ (that is,
p(x, · )ψ = µ for each x ∈ X). Then, for each time n ≥ 1 we have

N1/2(π̄µnf − πµnf)
in distribution

−−−−−−→ Gaussian
(
0, σ2

n(f)
)

as N →∞,
with

σ2
n(f) := c(f) γn−1,

where c(f) and γ are constants that do not depend on n, c(f) > 0 as long as f is not
a constant, and γ > 1 as long as the observation density g is different from 1.

First of all, as (Xn)n≥0 is a collection of i.i.d. random variables with distribution
µ, it follows that also (Yn)n≥1 is a collection of i.i.d. random variables with distribution

P(Y1 ∈ A) =

∫
µ(dx) g(x, y)ϕ(dy) 1A(y).

For each x ∈ X, y ∈ Y define

ḡ(x, y) :=
g(x, y)∫

µ(dx) g(x, y)
.

Then, for each N ≥ 1, n ≥ 1 we have

N1/2(π̄µnf − πµnf) =
N−1/2

∑N
i=1(f(Xn(i))− πµnf)

∏n
k=1 ḡ(Xk(i), Yk)

N−1
∑N

i=1

∏n
k=1 ḡ(Xk(i), Yk)

, (3.3)

where (Xk(i)), i ∈ {1, . . . , N}, k ∈ {1, . . . , n}, is a collection of i.i.d. random variables
with distribution µ, conditionally independent given Y1, . . . , Yn. By independence, for
each i and k we have

E ḡ(Xk(i), Yk) = E E(ḡ(Xk(i), Yk)|Yk) = E

∫
µ(dx)ḡ(x, Yk) = 1,
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and the strong Law of Large Numbers yields, as N →∞,

N−1

N∑

i=1

n∏

k=1

ḡ(Xk(i), Yk)
almost surely

−−−−−−→ E
n∏

k=1

ḡ(Xk(1), Yk) =
n∏

k=1

E ḡ(Xk(1), Yk) = 1

for the denominator in (3.3). On the other hand, as

πµnf =

∫
µ(dx) ḡ(x, Yn) f(x),

by independence it is immediately verified that

E (f(Xn(1))− πµnf)
n∏

k=1

ḡ(Xk(1), Yk) = 0

and

σ2
n(f) := E

(
(f(Xn(1))− πµnf)

n∏

k=1

ḡ(Xk(1), Yk)

)2

= c(f) γn−1,

where

c(f) := E

∫
µ(dx) (f(x)− πµ1 f)2 ḡ(x, Y1)2,

γ := E

∫
µ(dx) ḡ(x, Y1)2.

The Central Limit Theorem yields that the numerator in (3.3) converges in distribu-
tion as N →∞ to a Gaussian distribution with mean 0 and variance σ2

n(f). There-
fore, it is immediate that also (3.3) converges in distribution to the same Gaussian
distribution. Applying Jensen’s inequality twice we get

1 =

(
E

∫
µ(dx) ḡ(x, Y1)

)2

≤ E

(∫
µ(dx) ḡ(x, Y1)

)2

≤ E

∫
µ(dx) ḡ(x, Y1)2 = γ.

Thus, the asymptotic variance of the SIS algorithm increases exponentially with time
as long as g is different from 1.

The analysis in Example 3.5 can be extended to more general models. However,
even for linear Gaussian models where computations can be carried out explicitly,
the analysis becomes much more involved (we refer to [8] and references therein). In
practice, weight degeneracy is a major limitation that has render the SIS particle filter
largely useless in many applications where one is interested in tracking the underlying
state reliably for more than a few time steps.

In the next section we show that a modification of the sampling scheme considered
so far can produce samples that have a closer distribution to the filter πµn. This yields
a new algorithm that can overcome the degeneracy of the weights with time.
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Remark 3.6 (Importance sampling). In the literature (see [19] for instance) the
term “sequential importance sampling” is generally used to indicate a more general
algorithm than the one we just described. This term is used in the case where the
importance distribution being used in the importance sampling paradigm corresponds
to the law ρ′ of a given (possibly time-inhomogeneous) Markov chain (Zn)n≥0, which
can differ from the law ρ of the signal Markov chain (Xn)n≥0. The idea is to choose an
importance distribution that is as close as possible to the target distribution Pµ(X0:n ∈
· |Y1:n), so to improve the performance of the algorithm and possibly alleviate weights
degeneracy with time. Presently, we limit ourself to describe this more general version
of the SIS algorithm, and we refer to the discussion developed in Section 3.3.3 to
understand why importance sampling can not tackle the curse of dimensionality at a
fundamental level.

To make the point, fix n ≥ 1, define

ρ′(dx0:n) := µ(dx0) q1(x0, x1)ψ(dx1) · · · qn(xn−1, xn)ψ(dxn),

and assume that for each k ∈ {1, . . . , n}

(x,A) ∈ (X,X) −→
∫
qk(x, x

′)ψ(dx′) 1A(x′)

is a given transition kernel so that p(x, · )ψ � qk(x, · )ψ for each x ∈ X. Then, the
Radon-Nikodym derivative reads

dPY1:n

dρ′
(x0:n) =

1

Z

p(x0, x1) g(x1, Y1)

q1(x0, x1)
· · · p(xn−1, xn) g(xn, Yn)

qn(xn−1, xn)
,

where Z is defined in (3.1). In this case the self-normalized importance sampling
paradigm yields

πµnf(Y1:n) ≈
∫

(SNρ′PY1:n)(dx0:n) f(xn) =
N∑

i=1

Wn(i) f(Zn(i)),

where for each i ∈ {1, . . . , N} the weight recursion now reads

Wn(i) ∝ Wn−1(i)
p(Zn−1(i), Zn(i)) g(Zn(i), Yn)

qn(Zn−1(i), Zn(i))
, W0(i) = 1/N,

(the proportionality is always up to the normalization factor so that
∑N

i=1Wn(i) = 1),
and each Z(i) := (Z0(i), . . . , Zn(i)) is an independent sample from the distribution
ρ′, conditionally independent given Y1, . . . , Yn (see Remark 2.5). Clearly, if we choose
q1, . . . , qn as

qk(x, x
′)ψ(dx′) := P(Xk ∈ dx′|Xk−1 = x) = p(x, x′)ψ(dx′),

then we recover the SIS algorithm introduced in the main text. Another popular choice
in the literature is given by

q?k(x, x
′)ψ(dx′) := P(Xk ∈ dx′|Xk−1 = x, Y1:k) =

p(x, x′) g(x′, Yk)∫
p(x, x′) g(x′, Yk)ψ(dx′)

ψ(dx′),
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which yields the following weight recursion

W ?
k (i) ∝ W ?

k−1(i)

∫
p(Zk−1(i), x′) g(x′, Yk)ψ(dx′), W0(i) = 1/N.

The distribution ρ′? obtained with this choice is the so-called optimal distribution. In
this context the adjective “optimal” refers to the fact that the conditional variance of
the weights at each time step (given all the samples already generated by the algorithm)
is zero, namely,

Var(W ?
n(i) |Zk(j), k ∈ {1, . . . , n− 1}, j ∈ {1, . . . , N}) = 0,

as W ?
n(i) does not depend on Zn(i), i ∈ {1, . . . , N}.

3.3 Sequential importance resampling

One of the key property of the filter distribution is that it can be computed recursively:
in order to compute πµn we only need to know πµn−1 and Yn (Lemma 3.3). Despite
the fact that the SIS algorithm has an iterative implementation (Figure 3.2), the way
we derived this algorithm does not capture the recursive structure of the filter, as
the importance sampling paradigm was applied to the entire smoothing distribution
Pµ(X0:n ∈ · |Y1:n), for a fixed time n.

It seems natural to seek for a Monte Carlo approximation that can match the
recursive nature of the filter. The most popular algorithm of this type is the sequential
importance resampling (SIR) particle filter (also known as bootstrap particle filter)
introduced in 1993 by Gordon, Salmond and Smith in 1993 [28], which simply inserts
a sampling step in the filter recursion. To define this algorithm, let us rewrite the
Bayes recursion as follows:

πµ0 = µ, πµn = Fnπ
µ
n−1 (n ≥ 1),

where

(Fnρ)f :=

∫
ρ(dx) p(x, x′)ψ(dx′) g(x′, Yn) f(x′)∫
ρ(dx) p(x, x′)ψ(dx′) g(x′, Yn)

.

It is instructive to write the recursion Fn := CnP in two steps:

πµn−1

prediction

−−−−−→ Pπµn−1

correction

−−−−−→ πµn = CnPπ
µ
n−1,

where

(Pρ)f :=

∫
ρ(dx) p(x, x′)ψ(dx′) f(x′),

(Cnρ)f :=

∫
ρ(dx) g(x, Yn) f(x)∫
ρ(dx) g(x, Yn)

.

In the prediction step, the filter πµn−1 is propagated forward using the dynamics of
the underlying unobserved process (Xn)n≥0 to compute the predictive distribution
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Pµ(Xn ∈ · |Y1, . . . , Yn−1). Then, in the correction step the predictive distribution is
conditioned on the new observation Yn to obtain the filter πµn.

The SIR algorithm approximates πµn by the empirical distribution π̂µn computed
by the recursion

π̂µ0 := µ, π̂µn := F̂nπ̂
µ
n−1 (n ≥ 1),

where F̂n := CnS
NP consists of three steps

π̂µn−1

prediction

−−−−−→ Pπ̂µn−1

sampling

−−−−−→ SNPπ̂µn−1

correction

−−−−−→ π̂µn := CnS
NPπ̂µn−1.

Here N ≥ 1 is the number of particles used in the algorithm, and SN is the sampling
operator defined in Definition 2.16.1

It is straightforward to check that if Z ∼ ρ and Z ′ ∼ P (Z, · ), then Z ′ ∼ Pρ. So,
at each time step n ≥ 1, in order to draw N independent samples from Pπ̂µn−1 the
SIR algorithm draws N independent samples from π̂µn−1, namely,

Zn−1(i) ∼ π̂µn−1 i ∈ {1, . . . , N},
and then samples

Xn(i) ∼ P (Zn−1(i), · ) i ∈ {1, . . . , N}.
Then

SNPπ̂µn−1 =
1

N

N∑

i=1

δXn(i),

and by applying Cn we finally get

π̂µn := CnS
NPπ̂µn−1 =

N∑

i=1

Wn(i) δXn(i),

where

Wn(i) :=
g(Xn(i), Yn)∑N
`=1 g(Xn(`), Yn)

i ∈ {1, . . . , N}. (3.4)

Instead of repeatedly updating the weights as in the SIS algorithm, cf. (3.2), the SIR
algorithm resets all the weights to 1/N at each iteration, before updating them in
the correction step using the likelihood of the new observation. The implementation
of the algorithm is described in Figure 3.4.

The process of sampling from the distribution π̂µn−1 is usually referred to as the
resampling step, as N particles are sampled from an empirical measure that is itself
defined via N particles, specifically,

π̂µn−1 =
N∑

i=1

Wn−1(i) δXn−1(i) Xn−1(1), . . . , Xn−1(N) are i.i.d. ∼ Pπ̂µn−2.

1In the SIR algorithm the sampling operator is applied iteratively in time. At each iteration
of the algorithm, samples are drawn conditionally independent given the collection of all random
variables generated by the algorithm up to that iteration.
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Algorithm 2: SIR particle filter / Bootstrap particle filter

Data: Fix n,N ≥ 1. Let the observations Y1, . . . , Yn be given.
Let π̂µ0 = µ;
for k = 1, . . . , n do

Sample i.i.d. Zk−1(i), i = 1, . . . , N from the distribution π̂µk−1;
Sample Xk(i) ∼ p(Zk−1(i), · ) dψ, i = 1, . . . , N ;

Compute Wk(i) = g(Xk(i), Yk)/
∑N

`=1 g(Xk(`), Yk), i = 1, . . . , N ;

Let π̂µk =
∑N

i=1Wk(i) δXk(i);

Compute the approximate filter πµnf ≈ π̂µnf .

Figure 3.4: The classical sequential importance resampling (SIR) particle filter.

SIR

Each iteration of the ordinary particle filter (SIR) looks like this (N = 6):
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, (x(i))i=1,...,N ⇠ P⇡̂n�1.

Patrick Rebeschini (Princeton University) Particle filters and curse of dimensionality February 21, 2014 2 / 3
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(a) (b) (c) (d)

Level sets of
likelihood function
x �! g(x, Yn)

Figure 3.5: Representation of a single iteration of the SIR particle filter with X =
Y = R2

+ and N = 6. Each particle is represented by a blue ball, whose size
is proportional to the weight of the particle. (a) Representation of π̂n−1. (b)
Resampling step: N particles are sampled independently with replacement and
weights are reset to 1/N . If a number m is attached to a particle, then there are
m particles sharing the same location. (c) Particles are propagated forward using
the underlying dynamics. (d) Particles are reweighed according to the likelihood of
the new observation at time n (whose level sets are drawn in orange) yielding π̂n,
following the weight recursion (3.4).

In the resampling step particles with with low weights are less likely to be sampled
than particles with high weights. So, in the resampling step some of the particles
with low weights will disappear, while particles with large weights will be sampled
more than once. Figure 3.5 illustrates a typical iteration of the algorithm.

The resampling step is the basic mechanism that allows the SIR algorithm to
overcome the weight impoverishment problem of the SIS algorithm with time (Section
3.2.1). In the next section we make this intuition precise by providing a detailed error
analysis for the SIR particle filter.
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3.3.1 Filter stability and time-uniform error bounds

While the convergence analysis for the SIS particle filter is straightforward as the
algorithm is defined in terms of a collection of independent particles, for the SIR
algorithm the situation is more involved as at each iteration the resampling step
introduces dependency among particles (for example, recall that particles with high
weights are likely to be duplicated). Nonetheless, it is easily shown that for each
n ≥ 1 the particle filter π̂µn converges to the exact filter πµn as N →∞. To gain some
insight into the approximation properties of the SIR particle filter, let us perform
the simplest possible error analysis. Recall from Section 2.3 the following distance
between (possibly random) probability measures ρ, ρ′ on X:

|||ρ− ρ′||| := sup
|f |≤1

√
E (ρf − ρ′f)2.

From Lemma 2.10 and Lemma 2.17 we have

|||Pρ− Pρ′||| ≤ |||ρ− ρ′|||, |||ρ− SNρ||| ≤ 1√
N
.

Let us assume for simplicity that the observation density g is bounded away from
zero and infinity, that is, κ ≤ g(x, y) ≤ κ−1 for some 0 < κ < 1. From Lemma 2.9
(choosing g(x) := g(x, Yn)) we obtain

|||Cnρ− Cnρ
′||| ≤ 2κ−2|||ρ− ρ′|||.

Putting these bounds together and using the triangle inequality for the metric ||| · |||
we find

|||Fnρ− F̂nρ
′||| = |||CnPρ− CnS

NPρ′||| ≤ 2κ−2
{
|||Pρ− Pρ′||| − |||Pρ′ − SNPρ′|||

}

≤ 2κ−2

{
|||ρ− ρ′|||+ 1√

N

}
.

By iterating this inequality n times, using that πµ0 = π̂µ0 , we find

|||πµn − π̂µn||| ≤ 2κ−2

{
|||πµn−1 − π̂µn−1|||+

1√
N

}
≤ Cn√

N
,

with

Cn :=
n∑

i=1

(2κ−2)i.

So, for a fixed time n ≥ 1 the bootstrap particle filter does indeed approximate the
exact nonlinear filter as the number of particles N goes to infinity, with the typical
Monte Carlo 1/

√
N -rate.

In many applications, however, one needs to have good estimates for the filter at
arbitrary times. This is the case, for instance, of target tracking, where the goal is to
continuously track the location of the target. The analysis that we have performed so
far does not guarantee that the SIR particle filter can be successfully applied to this
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end, as Cn grows exponentially in time n. Fortunately, the exponential growth of the
error is an artifact of our crude bound and typically does not occur in practice. The
reason why the constant Cn obtained above growths with time is that we have per-
formed a recursive error analysis of the algorithm: we bounded the error committed
at each time step, and we naively iterated this bound for n steps, so that the error
accumulates over time.

We presently show that a more refined analysis that exploits the behavior of the
filter distribution itself—instead of working at the level of the filter recursion—yields
the following time-uniform error bound:

sup
n≥0
|||πµn − π̂µn||| ≤

C√
N
,

where C is a constant that does not depend on time. This is the reason why the SIR
algorithm has proved to perform extraordinarily well in many classical applications
such as target tracking, speech recognition, and finance [8].

The property of the filter that allows this analysis is the so-called filter stability
property, which roughly says that πµn forgets its initial condition µ as n→∞. As first
realized by Del Moral and Guionnet in 2001 [15], the stability property provides a
dissipation mechanism that mitigates the accumulation of approximation errors over
time, yielding time-uniform error bounds. In the reminder of this section we make
this idea precise under certain (strong) conditions.

Recall that both the filter and the SIR particle filter are defined recursively:

πµn := Fn · · · F1µ, π̂µn := F̂n · · · F̂1µ, n ≥ 1,

where Fn := CnP, F̂n := CnS
NP, and πµ0 = π̂µ0 = µ. The basic idea that allows to

prove time-uniform bounds for the bootstrap particle filter is based on the following
simple error decomposition [8]. If we write πµn − π̂µn as a telescoping sum:

πµn − π̂µn =
n∑

s=1

{Fn · · · Fs+1FsF̂s−1 · · · F̂1µ− Fn · · · Fs+1F̂sF̂s−1 · · · F̂1µ},

then by the triangle inequality we get

|||πµn − π̂µn||| ≤
n∑

s=1

|||Fn · · · Fs+1Fsπ̂
µ
s−1 − Fn · · · Fs+1F̂sπ̂

µ
s−1|||. (3.5)

The s-th term in this sum could be interpreted as the contribution to the total error
at time n due to the filter approximation made at time s. The key insight is now that
one can employ the filter stability property to control this sum uniformly in time.

The following theorem establishes filter stability in its simplest form, under a
certain ergodicity assumption on the signal process called mixing condition. As shown
in Lemma 2.10, this condition causes the signal (Xn)n≥0 itself to forget its initial
condition at an exponential rate, and the following results shows how the filter inherits
this property.
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Theorem 3.7 (Filter stability, inheritance). Suppose that the transition density p
satisfies the following mixing condition: there exists a constant 0 < ε < 1 such that

ε ≤ p(x, z) ≤ ε−1 for all x, z ∈ X.

Then, for any two (possibly random) probability measures ρ and ρ′ on (X,X) we have,
for n > s,

|||Fn · · · Fs+1ρ− Fn · · · Fs+1ρ
′||| ≤ 2 ε−2(1− ε2)n−s|||ρ− ρ′|||.

Proof. For each 1 ≤ k ≤ n define the (random) transition kernel

Kk|n(x,A) := P(Xk ∈ A|Xk−1 = x, Y1:n).

Proceeding as in the proof of Lemma 3.3, as Kk|n(x, · ) is the marginal of the distri-
bution P(Xk:n ∈ · |Xk−1 = x, Y1:n) on the Xk coordinate, it is easy to verify that

Kk|n(x,A) =

∫
p(x, x′)ψ(dx′) βk|n(x′, Yk+1:n) g(x′, Yk) 1A(x′)∫

p(x, x′)ψ(dx′) βk|n(x′, Yk+1:n) g(x′, Yk)
,

where βk|n can be defined through the backward recursion

βk|n(x, Yk+1:n) :=

∫
p(x, x′)ψ(dx′) g(x′, Yk+1) βk+1|n(x′, Yk+2:n), βn|n := 1.

By the Markov property it is easy to verify that conditionally on Y1, . . . , Yn the random
variables X0, . . . , Xn follows the law of a Markov chain. In fact, for each 1 ≤ k ≤ n
we have

P(Xk ∈ A|X0:k−1, Y1:n) = Kk|n(Xk−1, A)

and for any probability measure ρ on (X,X) and any real-valued measurable function
f we have

(Fn · · · F1ρ)f =

∫
Pρ(X0:n ∈ dx0:n|Y1:n) f(xn)

=

∫
Pρ(X0 ∈ dx0|Y1:n)

n∏

k=1

Pρ(Xk ∈ dxk|X0:k−1 = x0:k−1, Y1:n) f(xn)

= ρ0|nK1|n · · ·Kn|nf,

where we have defined ρ0|n := Pρ(X0 ∈ · |Y1:n). By the same argument, as Fn · · · F1

and Fn · · · Fs+1, for any 0 ≤ s < n, differ only in that a different sequence of observa-
tions (Y1, . . . , Yn versus Ys+1, . . . , Yn) is used in the computation of these quantities,
we have

Fn · · · Fs+1ρ = ρs|nKs+1|n · · ·Kn|n,

and it is easy to check that

ρs|n(A) :=

∫
ρ(dx) βs|n(x, Ys+1:n) 1A(x)∫

ρ(dx) βs|n(x, Ys+1:n)
.
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Therefore, by Lemma 2.10 and Lemma 2.9 we have

|||Fn · · · Fs+1ρ− Fn · · · Fs+1ρ
′||| = |||ρs|nKs+1|n · · ·Kn|n − ρ′s|nKs+1|n · · ·Kn|n|||
≤ (1− ε2)n−s|||ρs|n − ρ′s|n|||

≤ 2
supx∈X βs|n(x, Ys+1:n)

infx∈X βs|n(x, Ys+1:n)
(1− ε2)n−s|||ρ− ρ′|||.

The proof is immediately concluded once we notice that by the mixing conditions we
have

εC ≤ βs|n(x, Ys+1:n) ≤ ε−1C,

where

C :=

∫
g(x′, Ys+1) βs+1|n(x′, Ys+2:n).

Under the mixing condition for the signal, Theorem 3.7 tells us that the filter for-
gets its initial condition at a geometric rate. This also means that past approximation
errors are forgotten at an exponential rate: if we substitute the stability property in
the error decomposition (3.5), we obtain

|||πµn − π̂µn||| ≤
n∑

s=1

2 ε−2(1− ε2)n−s|||Fsπ̂µs−1 − F̂sπ̂
µ
s−1||| ≤ 2 ε−4 sup

n,ρ
|||Fnρ− F̂nρ|||.

Thus, if we can control the error |||Fnρ− F̂nρ||| in a single time step, we obtain a
time-uniform bound of the same order. In the case of the bootstrap particle filter, if
κ ≤ g(x, y) ≤ κ−1, we have that

|||Fnρ− F̂nρ||| = |||CnPρ− CnS
NPρ||| ≤ 2κ−2

√
N
,

and we obtain a time-uniform version of the crude error bound:

sup
n≥0
|||πµn − π̂µn||| ≤ 4 ε−4κ−2 1√

N
.

Let us remark at this point that the basic error decomposition discussed above
allows us to separate the problem of obtaining time-uniform bounds into two parts:
the one-step approximation error and the stability property. The development of
these ingredients constitutes the bulk of the framework that is introduced in Chapter
4 to deal with filtering problems in high dimension.

Remark 3.8 (Results in the literature). In [15] Del Moral and Guionnet prove several
time-uniform error bounds for the SIR algorithm, under assumptions on filter stability
that are also weaker compared the one considered in Theorem 3.7. Presently, we limit
our treatment the basic ideas that are instrumental for the framework that will be
developed in Chapter 4.
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3.3.2 The curse of dimensionality.

While the SIR algorithm provides estimates that have error bounds uniform with
time, it turns out that this algorithm suffers severely from the curse of dimensionality
with respect to the spatial dimension of the model. It is far from obvious at this
point why this should be the case. Indeed, the state spaces X and Y have only been
assumed to be Polish (a mild technical assumption meant only to ensure the existence
of regular conditional probabilities), and no explicit notion of dimension appears in
the above error bound. To understand why the bound

sup
n≥0
|||πµn − π̂µn||| ≤

C√
N

is typically exponential in the model dimension, we must consider a suitable class of
high-dimensional models in which the dependence on dimension can be explicitly in-
vestigated. In the present section we consider a simple class of trivial high-dimensional
models that is useless in any application, but is nonetheless helpful for the purpose of
developing intuition for dimensionality issues in particle filters. Moreover, this trivial
class of models represents the backbone of the more realistic framework that will be
considered in the next two chapters (see Section 4.1).

In a d-dimensional model, Xn and Yn are each described by d coordinates: X i
n, Y

i
n,

i ∈ {1, . . . , d}. To construct a trivial d-dimensional model, we simply start with a
given one-dimensional model and duplicate it d times. That is, let (X̃n, Ỹn)n≥0 be a
hidden Markov model on X̃ × Ỹ with transition density p̃ and observation density g̃
with respect to reference measures ψ̃ and ϕ̃, respectively. Then we set

X = X̃d, Y = Ỹd, ψ = ψ̃⊗d, ϕ = ϕ̃⊗d,

and

p(x, z) =
d∏

i=1

p̃(xi, zi), g(x, y) =
d∏

i=1

g̃(xi, yi),

so that each coordinate (X i
n, Y

i
n)n≥0 is an independent copy of (X̃n, Ỹn)n≥0. The

(trivial) dependency structure of this model is represented in Figure 3.6. Note that
we have used the term d-dimensional in the sense that our model has d independent
degrees of freedom: each degree of freedom can itself in principle take values in a
high- or even infinite-dimensional state space X̃× Ỹ. This is, however, precisely the
notion of dimension that is relevant to the curse of dimensionality (in [4, 47] this idea
is sharpened by a notion of “effective dimension”).
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Figure 3.6: Dependency graph of a (trivial) high-dimensional filtering model.

In this trivial setting, it is now easily seen how the curse of dimensionality arises in
our error bound. Indeed, let us assume again for simplicity that κ ≤ g̃(x̃, ỹ) ≤ κ−1 for
some 0 < κ < 1. Then κd ≤ g(x, y) ≤ κ−d, so we obtain a bound that is exponential
in the dimension d even after only one time step:

|||πµ1 − π̂µ1 ||| ≤
2κ−2d

√
N

.

An inspection of our bound clarifies the source of this exponential growth: even
though the Monte Carlo sampling itself is dimension-free (|||ρ− SNρ||| ≤ N−1/2 inde-
pendent of dimension, see Lemma 2.17), the correction operator Cn, which is highly
nonlinear, blows up the sampling error exponentially in high dimension. In particular,
it is evidently the dimension of the observations, rather than that of the underlying
model, that controls the exponential growth in our error bound.

Of course, the above analysis is far from convincing. First of all, we have only
proved a rather crude upper bound on the approximation error, so that it might be
possible that a more sophisticated bound would eliminate the exponential depen-
dence on dimension as was done using the filter stability property to eliminate the
exponential dependence on time. Second, one could argue that our strong notion
of approximation with respect to the |||·|||-norm is too restrictive to give meaningful
results in high dimension (which is in fact the case: we will later consider local error
bounds instead), so that a weaker notion of approximation might avoid the expo-
nential dependence on dimension. Unfortunately, the much more delicate analysis of
Bickel et al. [4, 47] demonstrates conclusively that the curse of dimensionality of the
bootstrap particle filter is a genuine phenomenon and not a mathematical deficiency
of our analysis, as we will briefly explain presently. Nonetheless, both the ideas raised
above to eliminate the exponential dependence on dimension will play an important
role in the framework developed in Chapter 4.
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3.3.3 Sample degeneracy with dimension

The reason why the SIR algorithm performs poorly when the model dimension is
high is essentially the same reason why the SIS algorithm behaves badly when the
time-horizon is large, and it has to do with the fact that the importance sampling
paradigm is typically very inefficient in high-dimensional models. As the SIS algo-
rithm approximates the smoothing distribution Pµ(X0:n ∈ · |Y1:n), the dimension of
interest in that case is time: weight degeneracy occurs as n increases2. On the other
hand, in the current analysis of the SIR algorithm in the trivial model at hand, the
dimension of interest is the number of hidden Markov chains in the model: weight
degeneracy occurs as d increases, and it is manifested even in a single iteration of the
algorithm, as the following two examples illustrate.

This example represents the analog of Example 3.4 for the SIR algorithm.

Example 3.9 (Weight degeneracy of SIR with dimension). In the framework intro-
duced in Section 3.3.2, consider the hidden Markov model where (Xn)n≥0 is a sym-
metric random walk in Zd, d ≥ 1, with X0 = x ∈ Zd, and for each n ≥ 1 we have
Yn = Xn + εηn, where ε ∈ R+ and (ηn)n≥0 is a collection of i.i.d. random variables
having the standard Gaussian distribution in Rd (that is, zero mean and identity co-
variance matrix). We now look at the first iteration of the SIR algorithm. If the
signal-to-noise ratio is high, that is, if ε is very close to 0, then we expect the distri-
bution Px(X1 ∈ · |Y1 = y1) to be very concentrated around X1, the true location of the
signal at time 1. However, if we sample N particles from the distribution Px(X1 ∈ · ),
then on average only N/2d particles will be close to X1, and the weight degeneracy gets
exponentially worse as the dimension d increases. Figure 3.7 represents this scenario.

The following asymptotical analysis (in the limit N → ∞) gives another quick
illustration of the degeneracy in dimension of the SIR algorithm. This example is the
analog of Example 3.5 in space.

Example 3.10 (Exponential growth of the SIR asymptotic variance with dimension).
Consider the (trivial) d-dimensional model introduced in Section 3.3.2. Let µ̃ be a
probability measure on X̃, and define µ = µ̃⊗d on X. Let f be a measurable function
on X such that f(x) = f(x̃) whenever x` = x̃`, for a certain ` ∈ {1, . . . , d}. Then,

N1/2(π̂µ1 f − πµ1 f)
in distribution

−−−−−−→ Gaussian
(
0, σ2

d(f)
)

as N →∞,

with

σ2
d(f) := c(f) γd−1,

where c(f) and γ are constants that do not depend on d, c(f) > 0 as long as f is not
a constant, and γ > 1 as long as the observation density g̃ is different from 1.

2Note that in our analysis of the SIS algorithm we ignored the curse of dimensionality with
respect to the model dimension. This issue is exactly the same as for the SIR algorithm, as this type
of weight degeneracy already appears in one iteration of the SIR particle filter. See Section 3.2.1.
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Curse of dimensionality

Curse of dimensionality manifests itself in particle filters as weight degeneracy.
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Curse of dimensionality manifests itself in particle filters as weight degeneracy.
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Figure 3.7: Representation of the first iteration of the SIR particle filter applied
to the hidden Markov model described in Example 3.9, with N = 4 particles and
x = ~0. Pictures (a), (b) and (c) refer for the case d = 1, while pictures (d), (e) and
(f) refer for the case d = 2. Each particle is represented by a blue ball, whose size
is proportional to the weight of the particle, and orange curves represents the level
sets of thelikelihood function. As symbolically represented, after the first iteration
of the algorithm only an average of N/2d particles have meaningful weights, which
is a manifestation of the curse of dimensionality.

For each x ∈ X̃, y ∈ Ỹ define

ḡ(x, y) :=
g̃(x, y)∫

µ̃(dz) p̃(z, x) ψ̃(dx) g̃(x, y)
.

Then, for each N ≥ 1 we have

N1/2(π̂µ1 f − πµ1 f) =
N−1/2

∑N
i=1(f(X1(i))− πµ1 f)

∏d
k=1 ḡ(Xk

1 (i), Y k
1 )

N−1
∑N

i=1

∏d
k=1 ḡ(Xk

1 (i), Y k
1 )

, (3.6)

where (X1(i))i=1,...,N is a collection of i.i.d. random variables with distribution

(Pµ)(A) =
∫ ∏d

k=1 µ̃(dzk)p̃(zk, xk)ψ̃(dxk) 1A(x), conditionally independent given Y1.
By independence, for each i we have

E
d∏

k=1

ḡ(Xk
1 (i), Y k

1 ) =
d∏

k=1

E E(ḡ(Xk
1 (i), Y k

1 )|Y k
1 )

=
d∏

k=1

E

∫
µ̃(dz) p̃(z, x) ψ̃(dx) ḡ(x, Y k

1 ) = 1,

and the strong Law of Large Numbers yields, as N →∞,

N−1

N∑

i=1

d∏

k=1

ḡ(Xk
1 (i), Y k

1 )
almost surely

−−−−−−→ E
d∏

k=1

ḡ(Xk
1 (i), Y k

1 ) = 1
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for the denominator in (3.6). On the other hand, as

πµ1 f =

∫ d∏

k=1

µ̃(dzk) p̃(zk, xk) ψ̃(dxk) ḡ(xk, Y k
1 ) f(x),

by independence it is immediately verified that

E (f(X1(i))− πµ1 f)
d∏

k=1

ḡ(Xk
1 (i), Y k

1 ) = 0

and

σ2
d(f) := E

(
(f(X1(i))− πµ1 f)

d∏

k=1

ḡ(Xk
1 (i), Y k

1 )

)2

= c(f) γd−1,

where

c(f) := E

∫
µ̃(dz`) p̃(z`, x`) ψ̃(dx`) (f(x)− πµ1 f)2 ḡ(x`, Y `

1 )2,

γ := E

∫
µ̃(dz) p̃(z, x) ψ̃(dx) ḡ(x, Y 1

1 )2.

The Central Limit Theorem yields that the numerator in (3.6) converges in distribu-
tion as N → ∞ to a Gaussian distribution with mean 0 and variance σ2

d(f). There-
fore, it is immediate that also (3.6) converges in distribution to the same Gaussian
distribution. Applying Jensen’s inequality twice we immediately get that γ > 1 as long
as g̃ is different from 1.

The key obstacle when the observations are high-dimensional is that the posterior
measure Cnρ is nearly singular with respect to the prior measure ρ (cf. Proposition
2.14). In particular, a point that has high likelihood under ρ has likelihood under Cnρ
that is exponentially small in the dimension. Therefore, if we draw a fixed number
N of samples from ρ, then with very high probability every one of these samples
will have exponentially small likelihood under Cnρ and, as is common in rare-event
scenarios, the least unlikely sample will be exponentially more likely than any of
the other samples. Thus CnS

Nρ will put almost all its mass on the sample with
the largest likelihood, which yields effectively a Monte Carlo approximation of Cnρ
with sample size 1 rather than N . This situation is illustrated in Figure 3.8. This
weight degeneracy phenomenon rules out any meaningful form of approximation in
high dimension. In [4, 47], a careful analysis shows that the collapse phenomenon
occurs unless the sample size N is taken to be exponential in the dimension, which
provides a rigorous statement of the curse of dimensionality.

Remark 3.11. (Curse of dimensionality and sample degeneracy) Sample degeneracy
is the manifestation of the curse of dimensionality phenomenon in particle filters, but
it does not coincides with it. For instance, particle degeneracy appears also in low
dimensional models if the noise driving both the dynamics and the observation is low
[61].
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Curse of dimensionality

Fundamental problem: as d ! 1, prob. measures become mutually singular.

Weight degeneracy: importance sampling can not fundamentally address the issue
due to the recursive nature of the filtering problem (see also Snyder 2011).

Q. Is there any hope?

Patrick Rebeschini (Princeton University) Particle filters and curse of dimensionality February 21, 2014 5 / 5

(a) (b)

⇢ Cn⇢

CnSN⇢

⇢ Cn⇢

CnSN⇢

Figure 3.8: Illustration of weights degeneracy with model dimension in a typical
iteration of the SIR particle filter. (a) Probability measures in low dimension. (b)
Probability measures in high dimension (low-dimensional representation). In high
dimension ρ and Cnρ tend to put mass on different portions of the space. This is
the reason why already after a single iteration of the SIR particle filter only a small
fraction of samples (in fact, a fraction that is exponentially small in the dimension)
is relevant in the algorithm. Each sample X from ρ is represented by a blue ball
whose size is proportional to the likelihood g(X,Yn), as prescribed by the weights
definition (3.4).

Despite that the SIR particle filter suffers from the curse of dimensionality when
applied to the full (trivial) model of Section 3.3.2, it is obvious in this case that one
can surmount this problem in a simple fashion: as each of the coordinates of the
high-dimensional model is independent, one can simply run an independent SIR filter
in each coordinate. It is evident that the local error of this algorithm (that is, the
error of the marginal of the filter in each coordinate) is, by construction, independent
of the model dimension d. In this sense, this trivial model shows that it is indeed
possible to filter very efficiently regardless of the ambient dimension (though not with
the SIR particle filter, which fails spectacularly). Chapter 4 builds on this intuition
by considering a more general class of models and by developing a sampling strategy
that can overcome the weights degeneracy with model dimension.

Remark 3.12 (Smoothing in high dimension). If, instead of computing the fil-
ter P(Xn ∈ · |Y1, . . . , Yn), we wish to compute the full conditional path distribution
P(X0, . . . , Xn ∈ · |Y1, . . . , Yn) (known as the smoothing problem), then Markov Chain
Monte Carlo (MCMC) methods can be successfully employed in high dimension. How-
ever, this procedure requires the entire history of observations and is not recursive,
so that it cannot be implemented on-line and is impractical over a long time horizon
(cf. [3]). The crucial question to be addressed is therefore whether it is possible to
develop filtering algorithms that are both recursive and that admit error bounds that
are uniform in time and in the model dimension.
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Remark 3.13 (Importance sampling). As in the case of the SIS algorithm (cf.
Remark 3.6), also the SIR algorithm can be described as an instance of the self-
normalized importance sampling paradigm introduced in Section 2.5, and different
importance distributions can be considered. While the practical performance of the
SIR algorithm can be largely improved by working with importance distributions that
are tailored to the specific model being investigated, the benefit is limited to reducing
the constants sitting in front of the error bounds, and this technique does not provide
a fundamental solution to the curse of dimensionality. A new paradigm is needed, as
we will see in the next chapter.
Presently we link our formulation of the SIR algorithm with the one usually consid-
ered in the literature (see [19] for instance). First of all, notice the following identity3

which holds for each n,N ≥ 1, and for each probability measure ρ on (X,X):

CnS
Nρ = SNρ Cnρ.

In fact, by definition of Cn and SN we have

CnS
Nρ =

∑N
i=1 g(X(i), Yn) δX(i)∑N

i=1 g(X(i), Yn)
, X(1), . . . , X(N) are i.i.d. samples ∼ ρ.

On the other hand, as the Radon-Nikodym derivative between Cnρ and ρ reads

d(Cnρ)

dρ
(x) =

g(x, Yn)∫
ρ(dx) g(x, Yn)

,

from the definition of SNρ (Definition 2.18) we have

SNρ Cnρ =

∑N
i=1

d(Cnρ)
dρ

(X(i)) δX(i)
∑N

i=1
d(Cnρ)
dρ

(X(i))
= CnS

Nρ.

Therefore, the SIR algorithm introduced in the main text can formulated as follows:

π̂µn−1

prediction

−−−−−→ Pπ̂µn−1

correction

−−−−−→ CnPπ̂
µ
n−1

importance
sampling

−−−−−→ π̂µn := SNλnCnPπ̂
µ
n−1,

where the importance distribution is λn = Pπ̂µn−1.
The so-called “optimal” distribution is given by the choice λ?n = CnPπ̂

µ
n−1. As

SNµ µ = SNµ, this choice yields the following algorithm

π̂µn−1

prediction

−−−−−→ Pπ̂µn−1

correction

−−−−−→ CnPπ̂
µ
n−1

sampling

−−−−−→ π̂µn := SNCnPπ̂
µ
n−1.

To see that this algorithm corresponds to the “optimal” SIR particle filter (cf. [19]),
note that sampling from the measure CnPπ̂

µ
n−1, where π̂µn−1 =

∑N
i=1 δXn−1(i), can be

implemented as follows. Define two random variables X and Z with joint distribution

M(Z ∈ dz,X ∈ dx) :=
π̂µn−1(dz) p(z, x)ϕ(dx) g(x, Yn)∫
π̂µn−1(dz) p(z, x)ϕ(dx) g(x, Yn)

,

3Here we assume that the samples X(1), . . . , X(N) generated by SNρ are the same as the samples
generated from SNρ , which is why we speak of identity between CnS

Nρ and SNρ Cnρ.
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and note that M(X ∈ · ) = CnPπ̂
µ
n−1. To sample X̃ ∼ M(X ∈ · ) we can do the

following:

1. sample Z̃ ∼M(Z ∈ dz) =
π̂µn−1(dz)

∫
p(z,x)ϕ(dx) g(x,Yn)∫

π̂µn−1(dz) p(z,x)ϕ(dx) g(x,Yn)
=
∑N

i=1W
?
n(i) δXn−1(i)(dz);

2. sample X̃ ∼M(X ∈ dx|Z = Z̃) = p(Z̃,x)ϕ(dx) g(x,Yn)∫
p(Z̃,x)ϕ(dx) g(x,Yn)

;

where we have defined the “optimal” weights

W ?
n(i) :=

∫
p(Xn−1(i), x′)ψ(dx) g(x′, Yn)

∑N
i=1

∫
p(Xn−1(i), x′)ψ(dx) g(x′, Yn)

.

Even if we were able to sample from the weighted measure CnPπ̂
µ
n−1 as described above,

this would still not resolve the curse of dimensionality in the filtering context. Indeed,
the error between πµ1 = F1µ and π̂µ1 = F̂1µ would be dimension-free, namely,

‖πµ1 − π̂µ1‖ = ‖C1Pµ− SNC1Pµ‖ ≤
1√
N
,

but the error between πµ2 = F2π
µ
1 and π̂µ2 = F̂2π̂

µ
1 would again exhibit exponential

dependence on the dimension due to the sampling performed in the first time step.
The curse of dimensionality would therefore still arise due to the recursive nature of
the filtering problem (see also [46]).
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Chapter 4

Block particle filter

This chapter is to develop the main framework of local particle filters that can over-
come the curse of dimensionality. This is achieved by providing a detailed analysis of
the block particle filter that we presently introduce. Emphasis is given to the decay of
correlations property, which is seen to be the key to establish spatially uniform error
bounds, thus representing the spatial counterpart of filter stability. The material here
presented builds on the ideas introduced at the end of the previous chapter, and it is
instrumental for the next chapter. This chapter is based on the paper [40].

4.1 Filtering models in high dimension

In order to investigate filtering problems in high dimension in a systematic way, we
presently introduce a class of high-dimensional filtering models that will provide the
basic framework to be investigated throughout this chapter and the next one. In these
models, the state (Xn, Yn) at each time n is a random field (Xv

n, Y
v
n )v∈V indexed by

a (finite) undirected graph G = (V,E). The graph G describes the spatial degrees of
freedom of the model, and the underlying dynamics and observations are local with
respect to the graph structure in a sense to be made precise below. The dimension
of the model should be interpreted as the cardinality of the vertex set V , which is
typically assumed to be large. Our aim is to develop quantitative results that are,
under appropriate assumptions, independent of the dimension cardV .

We now define the hidden Markov model (Xn, Yn)n≥0 to be considered in the sequel
(we will adopt throughout the basic setting and notation introduced in Section 3.1).
The state spaces X and Y of Xn and Yn, and the reference measures ψ and ϕ of the
transition densities p and g, respectively, are of product form

X =
∏

v∈V

Xv, Y =
∏

v∈V

Yv, ψ =
⊗

v∈V

ψv, ϕ =
⊗

v∈V

ϕv,

where ψv and ϕv are reference measures on the Polish spaces Xv and Yv, respectively.
The transition densities p and g are given by

p(x, z) =
∏

v∈V

pv(x, zv), g(x, y) =
∏

v∈V

gv(xv, yv),
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Figure 4.1: Dependency graph of a high-dimensional filtering model of the type
considered in this chapter.

where pv : X×Xv → R̄+ and gv : Xv ×Yv → R̄+ are transition densities with respect
to the reference measures ψv and ϕv, respectively.

The spatial graph G is endowed with its natural distance d (that is, d(v, v′) is
the length of the shortest path in G between v, v′ ∈ V ). Let us fix throughout a
neighborhood size r ∈ N, and define for each vertex v ∈ V the r-neighborhood

N(v) := {v′ ∈ V : d(v, v′) ≤ r}.
We will assume that the dynamics of the underlying process (Xn)n≥0 is local in the
sense that pv(x, zv) depends on xN(v) only (we write xJ = (xj)j∈J for J ⊆ V ):

pv(x, zv) = pv(x̃, zv) whenever xN(v) = x̃N(v).

That is, the conditional distribution of Xv
n given X0, . . . , Xn−1 depends on X

N(v)
n−1 only.

Similarly, by construction, the observations are local in that the conditional distribu-
tion of Y v

n given Xn depends on Xv
n only. This dependence structure is illustrated in

Figure 4.1 (in the simplest case of a linear graph G with r = 1).
Markov models of the form introduced above appear in the literature under various

names, such as locally interacting Markov chains or probabilistic cellular automata
[16, 35]. Such models arise naturally in numerous complex and large-scale applica-
tions, including percolation models of disease spread or forest fires, freeway traffic
flow models, probabilistic models on networks and large-scale queueing systems, and
various biological, ecological and neural models. Moreover, local Markov processes
of this type arise naturally from finite-difference approximation of stochastic partial
differential equations, and are therefore in principle applicable to a diverse set of
data assimilation problems that arise in areas such as weather forecasting, oceanog-
raphy, and geophysics (cf. Section 4.4.4). While more general models are certainly
of substantial interest, the model defined above is prototypical of a broad range of
high-dimensional data assimilation problems and provides a basic setting for the in-
vestigation of filtering problems in high dimension.
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4.2 Decay of correlations and localization

As was explained in Section 3.3.2, the SIR particle filter is not well suited to address
high-dimensional filtering models: the approximation error generally grows exponen-
tially in the model dimension cardV . However, in the trivial case when the signal
dynamics does not couple neighbors, that is, r = 1 (this is the analogue of the trivial
model introduced in Section 3.3.2), we know an algorithm that can overcome the
curse of dimensionality: we can simply run the SIR particle filter independently to
each of the chains constituting the model. Clearly, in this way the error bound per-
taining each single marginal of the model (that is, each chain) is, by construction,
independent of the model dimension.

When the signal dynamics couples neighbors (r > 1), however, the law of the
model at each spatial location is no longer independent. Nonetheless, large-scale
interacting systems can exhibit an approximate version of independence among coor-
dinates: this is the decay of correlations phenomenon that has been particularly well
studied in statistical mechanics (see, e.g., [27]). Informally speaking, while the states
(Xv

n, Y
v
n ) and (Xw

n , Y
w
n ) at two sites v, w ∈ V are probably quite strongly correlated

when v and w are close together, one might expect that (Xv
n, Y

v
n ) and (Xw

n , Y
w
n ) are

nearly independent when v and w are far apart as measured with respect to the nat-
ural distance d in the graph G. The idea is that due to the decay of correlations, also
in the care r > 1 the model can be “locally low-dimensional”, in the sense that the
conditional distribution of each coordinate only needs to be updated by observations
in a neighborhood whose size is independent of the ambient dimension. Roughly
speaking, the “local dimension” of the model is the number of coordinates in a ball
whose radius is the correlation length of the filtering distribution.

As seen in Section 3.3.1, the sampling step added to the original filter recursion is
the key to exploit algorithmically filter stability and get particle filters (i.e., the SIR
particle filter) that yield time-uniform error bounds. In this chapter we will demon-
strate that proper forms of localization of the filter recursion can be used to exploit
algorithmically the decay of correlations property and to design local particle filters
that yield error bounds that are uniform both in time and in the model dimension.

A speculative back-of-the-envelope computation explains how this might work.
Due to the decay of correlations, the conditional distribution of the site Xv

n given
the new observation Yn should not depend significantly on observations Y w

n at sites
w distant from v. Suppose we can develop a local particle filtering algorithm that
at each site v only uses observations in a local neighborhood K of v to update the
filtering distribution. As we have now restricted to observations in K, the sampling
error at each site will be exponential only in cardK rather than in the full dimension
cardV . On the other hand, the truncation to observations in K is only approximate:
the decay of correlations property suggests that the bias introduced by this truncation
should decay exponentially in diamK. Therefore,

error = bias + variance ≈ e− diamK +
ecardK

√
N

.
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If the size of the neighborhoods K is chosen so as to optimize the error, then the
resulting algorithm is evidently consistent (with a slower convergence rate than the
standard 1/

√
N Monte Carlo rate: this is likely unavoidable in high dimension) with

an error bound that is independent of the model dimension cardV .

4.3 Block particle filter

In this chapter we will investigate in detail the simplest possible local particle fil-
tering algorithm that can exploit decay of correlations properties of the underlying
filtering model, the block particle filter. While this algorithm possesses some inherent
limitations (see Section 4.4.3 below), it is the simplest local algorithm both mathe-
matically and computationally, and therefore provides an ideal starting point for the
investigation of particle filters in high dimension.

To define the block particle filtering algorithm, we begin by introducing a partition
K of the vertex set V into nonoverlapping blocks: that is, we have

V =
⋃

K∈K

K, K ∩K ′ = ∅ for K 6= K ′, K,K ′ ∈ K.

We now define the blocking operator

Bρ :=
⊗

K∈K

BKρ,

where for any measure ρ on X =
⊗

v∈V Xv and J ⊆ V we denote by BJρ the marginal
of ρ on

⊗
v∈J Xv. The random field described by the measure Bρ on X is independent

across different blocks defined by the partition K, while the marginal on each block
agrees with the original measure ρ. The block particle filter inserts an additional
blocking step into the SIR particle filter recursion: that is,

π̂µ0 = µ, π̂µn = F̂nπ̂
µ
n−1 (n ≥ 1),

where F̂n := CnBS
NP consists of four steps

π̂n−1

prediction

−−−−−→ Pπ̂n−1

sampling

−−−−−→ SNPπ̂n−1

blocking

−−−−−→ BSNPπ̂n−1

correction

−−−−−→ π̂n := CnBS
NPπ̂n−1.

The resulting algorithm is given in Figure 4.2. Figure 4.3 illustrates a typical iteration
of the algorithm. In the special case K = {V }, the block particle filter reduces to
the SIR particle filter, so that the former is a strict generalization of the latter (we
have therefore not introduced a separate notation for the SIR particle filter: in this
chapter, the notation π̂µn always refers to the block particle filter).

The introduction of independent blocks allows to localize the algorithm, which
will be crucial in the high-dimensional setting. We can immediately see this fact if
we apply the block particle filter to the trivial model obtained with r = 1: choosing
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Algorithm 3: Block particle filter

Data: Fix n,N ≥ 1. Let the observations Y1, . . . , Yn be given.
Let π̂µ0 = µ;
for k = 1, . . . , n do

Sample i.i.d. Zk−1(i), i = 1, . . . , N from the distribution π̂µk−1;
Sample Xv

k (i) ∼ pv(Zk−1(i), · ) dψv, i = 1, . . . , N , v ∈ V ;

Compute WK
k (i) =

∏
v∈K gv(Xv

k (i),Y vk )∑N
`=1

∏
v∈K gv(Xv

k (`),Y vk )
, i = 1, . . . , N , K ∈ K;

Let π̂µk =
⊗

K∈K
∑N

i=1 W
K
k (i) δXK

k (i);

Compute the approximate filter πµnf ≈ π̂µnf .

Figure 4.2: The block particle filtering algorithm considered in this chapter.

SIRB

Each iteration of the local particle filter looks like this (N = 6):

Y n!

⇡̂n =
O

v2V

NX

i=1

wv
n(i)�xv(i), wv

n(i) =
gv(xv(i), Y v

n )
PN

i=1 g(xv(i), Y v
n )

, (x(i))i=1,...,N ⇠ P⇡̂n�1.

Patrick Rebeschini (Princeton University) Particle filters and curse of dimensionality February 21, 2014 3 / 3
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(a) (b) (c) (d) (e)

Figure 4.3: Representation of a single iteration of the block particle filter, with
X = Y = R2

+ and N = 6. Each particle is represented by a ball, whose size
is proportional to the weight of the particle. (a) Representation of π̂n−1. (b)
Resampling step: N particles are sampled independently with replacement and
weights are reset to 1/N . (c) Particles are propagated forward using the underlying
dynamics. (d) Blocking step: grey balls represent the “ghost” particles that are
generated by shuffling the coordinates of the existing N particles (blue balls). (e)
Particles are reweighed according to the likelihood of the new observation at time
n (whose level sets are drawn in orange) yielding π̂n.
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K =
⋃
v∈V {v} the algorithm reduces to applying the SIR particle filter independently

to each of the chains constituting the model; that is, we recover the original algorithm
that motivated our discussion in the first place.

The rest of the chapter is devoted to showing that the localization procedure
introduced by the blocking step can indeed overcome the curse of dimensionality
even in the more realistic case of a coupled dynamics, r > 1 (proofs are provided in
Appendix A). Note that in this case the blocking step introduces some bias in the
algorithm, so that the estimates given by the block particle filter do not converge to
the exact filter distributions as the number of particles N goes to infinity. However,
the hope is that by introducing a small amount of bias in the algorithm, its variance
can be reduced significantly.

In fact, it is immediately evident from inspection of the block particle filtering
algorithm that only observations in block K are used by the algorithm to update the
filtering distribution in block K. Therefore, following the heuristic ideas discussed in
the Section 4.2, we expect that the sampling error of the algorithm is exponential in
cardK rather than in the model dimension cardV . To control the bias introduced
by the blocking step, note that the blocking operator Bρ decouples the distribution
ρ at the boundaries of the blocks. The decay of correlations property (if it can
be established) should cause the influence of such a perturbation on the marginal
distribution at a vertex v ∈ K to decay exponentially in the distance from v to the
boundary of the block K. Thus the back-of-the-envelope computation in Section
4.2 applies to the local error at “most” vertices, as the boundaries of the blocks
only constitute a small fraction of the total number of vertices. On the other hand,
the error will necessarily be larger for vertices closer to the block boundaries. This
spatial inhomogeneity of the local error is an inherent limitation of the block particle
filter that one might hope to alleviate by the development of more sophisticated local
particle filters. We postpone further discussion of this point to Section 4.4.3.

Remark 4.1 (On distributed computing). By their nature, local particle filtering
algorithms, such as the block particle filter here considered, are well suited to dis-
tributed computation: as the particles are updated locally in the spatial graph, this
opens the possibility of implementing each local neighborhood on a separate processor.
While this was not the original intention of the algorithms we propose, such properties
could prove to be advantageous in their own right for the practical implementation of
filtering algorithms in very large-scale systems.

4.4 Main result: error bounds uniform in the di-

mension

Having introduced the block particle filtering algorithm, we now proceed to formulate
the main result of this chapter (Theorem 4.2 below).

Recall that we have introduced the neighborhoods

N(v) := {v′ ∈ V : d(v, v′) ≤ r}
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above, where the neighborhood size r is fixed throughout this chapter (in our model,
the state of vertex v depends only on the states of vertices in N(v) in the previous
time step). Given a set J ⊆ V , we denote the r-inner boundary of J as

∂J := {v ∈ J : N(v) 6⊆ J}

(that is, ∂J is the subset of vertices in J that can interact with vertices outside J in
one step of the dynamics). We also define the following quantities:

|K|∞ := max
K∈K

cardK,

∆ := max
v∈V

card{v′ ∈ V : d(v, v′) ≤ r},

∆K := max
K∈K

card{K ′ ∈ K : d(K,K ′) ≤ r},

where we define as usual d(J, J ′) := minv∈J minv′∈J ′ d(v, v′) for J, J ′ ⊆ V . Thus |K|∞
is the maximal size of a block in K, while ∆ (∆K) is the maximal number of vertices
(blocks) that interact with a single vertex (block) in one step of the dynamics. It
should be emphasized that r, ∆ and ∆K are local quantities that depend on the
geometry but not on the size of the spatial graph G.

Finally, we introduce for J ⊆ V the local distance

|||ρ− ρ′|||J := sup
f∈XJ :|f |≤1

√
E |ρ(f)− ρ′(f)|2

between random measures ρ, ρ′ on X, where XJ denotes the class of measurable func-
tions f : X→ R̄ such that f(x) = f(x̃) whenever xJ = x̃J .

Theorem 4.2 (Block particle filter, main result). There exists a constant 0 < ε0 < 1,
depending only on the local quantities ∆ and ∆K, such that the following holds.

Suppose there exist ε0 < ε < 1 and 0 < κ < 1 such that

ε ≤ pv(x, zv) ≤ ε−1, κ ≤ gv(xv, yv) ≤ κ−1 ∀ v ∈ V, x, z ∈ X, y ∈ Y.

Then for every n ≥ 0, x ∈ X, K ∈ K and J ⊆ K we have

|||πxn − π̂xn|||J ≤ α card J

[
e−β1d(J,∂K) +

eβ2|K|∞
√
N

]
,

where the constants 0 < α, β1, β2 <∞ depend only on ε, κ, r, ∆, and ∆K.

The key point of this result is that both the assumptions and the resulting error
bound depend only on local quantities. In particular, the assumptions and error
bound depend neither on time n nor on the model dimension cardV .

Remark 4.3 (On the assumptions of Theorem 4.2). A threshold requirement of the
form ε > ε0 is essential in order to obtain the decay of correlations property: the decay
of correlations can fail if ε > 0 is too small (a phenomenon known as phase transition
in statistical mechanics). Otherwise, the assumptions of Theorem 4.2 are comparable
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to assumptions commonly imposed in the literature to obtain error bounds for the SIR
particle filter [8, 15] and possess similar limitations. We postpone a discussion of
these issues to Section 4.4.1 below. Let us also note that explicit expressions for the
constants in Theorem 4.2 can be read off from the proofs; however, we do not believe
that our methods are sufficiently sharp to yield practical quantitative results.

Remark 4.4 (Dependence on observations). The particle filter π̂µn depends both on
the random samples that are drawn in the algorithm and on the random sequence of
the observations. However, the randomness of the observations plays no role in our
proofs. One can therefore interpret the expectation in the definition of |||·|||J as being
taken only with respect to the random sampling mechanism in the block particle filter,
and the bound of Theorem 4.2 as holding uniformly with respect to the observation
sequence.

Remark 4.5 (Initial measure). In Theorem 4.2 we have considered πxn and π̂xn with
a non-random initial condition x ∈ X. This is a choice of convenience: the proof
of Theorem 4.2 yields the same conclusion for more general initial conditions that
satisfy a suitable decay of correlations property. On the other hand, the stability
property of the filter (e.g., Corollary A.5) ensures that πµn forgets its initial condition
µ exponentially fast uniformly in the dimension, so there is little loss of generality in
choosing a computationally convenient initial condition.

To provide a concrete illustration of Theorem 4.2, we consider in the remainder
of this section the example where the spatial graph G is a square lattice, that is,

V = {−d, . . . , d}q (d, q ∈ N)

endowed with its natural edge structure. Note that in this case, the graph distance
d(v, v′) is simply the `1-distance between the corresponding vectors of integers. To
define the partition K, we cover V by blocks of radius b ∈ N: that is,

K = {(x+ {−b, . . . , b}q) ∩ V : x ∈ (2b+ 1)Zq}.
We assume for simplicity in the sequel that b ≥ r, and that (2d+ 1)/(2b + 1) ∈ N is
integer so that all K ∈ K are translates of {−b, . . . , b}q (this slightly simplifies our
arguments below but is not essential to our results). We can easily compute

|K|∞ = (2b+ 1)q, ∆ ≤ (2r + 1)q, ∆K ≤ 3q.

Note that these local quantities do not depend on the size d of our lattice. In a data
assimilation application one might have, for example, q = 2, r = 1, d ∼ 103.

Consider the block K = {−b, . . . , b}q. Note that for u = 0, . . . , b− r
{v ∈ K : d(v, ∂K) > u} = {−(b− r − u), . . . , b− r − u}q.

Fix 0 < δ < 1 and choose u = bδ(2b+ 1)/2q − rc. Then

card{v ∈ K : d(v, ∂K) > u}
cardK

=

(
2(b− r − u) + 1

2b+ 1

)q
≥ 1− δ,

where we have used 1 − (1 − δ)1/q ≥ δ/q. The same conclusion evidently holds for
every block K ∈ K. Thus Theorem 4.2 gives the following corollary.
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Corollary 4.6. In the square lattice setting V = {−d, . . . , d}q, there exists a constant
0 < ε0 < 1, depending only on r and q, such that the following holds.

Suppose there exist ε0 < ε < 1 and 0 < κ < 1 such that

ε ≤ pv(x, zv) ≤ ε−1, κ ≤ gv(xv, yv) ≤ κ−1 ∀ v ∈ V, x, z ∈ X, y ∈ Y.

Then for every x ∈ X, n ≥ 0, and 0 < δ < 1 we have

card

{
v ∈ V : |||πxn − π̂xn|||v ≤ α′e−β

′
1δ(2b+1) + α′

eβ
′
2(2b+1)q

√
N

}
≥ (1− δ) cardV,

where the constants 0 < α′, β′1, β
′
2 <∞ depend only on ε, κ, r, and q.

In particular, if we choose the block size b = b1
2
(4β′2)−1/q log1/qN − 1

2
c, then

card
{
v ∈ V : |||πxn − π̂xn|||v ≤ c1e

−c2δ log1/q N
}
≥ (1− δ) cardV

and
1

cardV

∑

v∈V

|||πxn − π̂xn|||v ≤
c3

log1/qN
,

where the constants 0 < c1, c2, c3 <∞ depend only on ε, κ, r, and q.

Corollary 4.6 makes precise the notion that a properly tuned block particle filter
can avoid the curse of dimensionality: choosing the block size b ∼ log1/qN , we obtain
a local error that can be made arbitrarily small, uniformly both in time n and in
the lattice size d, by choosing a sufficiently large sample size N . More precisely,
we see that the local error at most locations (i.e., on an arbitrarily large fraction of

the graph) is of order e−c log1/q N , which is polynomial for q = 1 and subpolynomial
otherwise. The bound for the average local error is similarly uniform in n and d,
albeit with a very slow convergence rate. It appears that these results are chiefly
limited by the spatial inhomogeneity that is inherent in the block particle filtering
algorithm, as will be discussed in Section 4.4.3 below.

Remark 4.7. We have stated the local error in Corollary 4.6 in terms of one-
dimensional marginals |||πxn − π̂xn|||v for simplicity; an analogous result can be obtained
for marginals over cubes of any fixed size |||πxn − π̂xn|||v+{−s,...,s}q .

Remark 4.8. Theorem 4.2 and Corollary 4.6 should be viewed as a theoretical proof
of concept that it is possible, in principle, to design particle filters that avoid the curse
of dimensionality. In practice, the slow rate b ∼ log1/qN suggests that the block size
must typically be quite small (of order unity) for realistic values of the sample size N ,
which yields a large bias term in our bounds. We have nonetheless observed in simple
simulations that the algorithm can work quite well even with the choice b = 0, so that
the practical utility of the algorithm may not be fully captured by our mathematical
results. Moreover, specific features of certain data assimilation applications, such as
sparsity of observations, could make it possible to choose substantially larger blocks.
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A systematic investigation of the empirical performance of local particle filtering al-
gorithms in applications is beyond the scope of our analysis, however. The practical
implementation of local particle filters for data assimilation will likely require further
advances in all mathematical, methodological and applied aspects of high-dimensional
filtering.

In the next three sections we discussion the main aspects of Theorem 4.2.

4.4.1 Mixing assumptions and the ergodicity threshold

The basic assumption of Theorem 4.2 is that the local transition densities are bounded
above and below:

ε ≤ pv(x, zv) ≤ ε−1, κ ≤ gv(xv, yv) ≤ κ−1.

This is a local counterpart of the mixing assumptions that are routinely employed in
the analysis of particle filters [8, 15]. The global mixing assumption ε ≤ p(x, z) ≤ ε−1

would imply that the underlying Markov chain is strongly ergodic (in the sense that its
transition kernel is a strict contraction with respect to the total variation distance,
cf. Lemma 2.10) and is often used to establish the stability property of the filter
(cf. Theorem 3.7). This is essential to obtain a time-uniform bound on the particle
filter error, see Section 3.3.1 and Section 4.5.1 below. The local mixing assumption
ε ≤ pv(x, zv) ≤ ε−1 employed here should similarly be viewed as a local ergodicity
assumption on the model.

It is well known that strong mixing assumptions of this type impose some con-
straints on the underlying model. In particular, strong mixing assumptions often
require a compact state space: in a noncompact state space the likelihood ratio
p(x, z)/p(x′, z) is typically unbounded as |z| → ∞ (this is readily verified in lin-
ear Gaussian models, for example), while ε ≤ p(x, z) ≤ ε−1 would imply that
p(x, z)/p(x′, z) is uniformly bounded. Similarly, the assumptions of Theorem 4.2
will typically only hold in models whose local state spaces Xv and Yv are compact.
While qualitative results in this area have been obtained in much more general set-
tings (cf. [52] and the references therein), it has proved to be more difficult to obtain
quantitative results under assumptions weaker than strong mixing conditions: it re-
mains an open problem, for example, to obtain quantitative time-uniform bounds
under mild ergodicity assumptions even for the approximation error of the SIR par-
ticle filter. These technical issues are however unrelated to the problems that arise in
high dimension, and we do not address them here.

On the other hand, there is a crucial assumption in Theorem 4.2 that does not
arise in finite dimension. In classical results on particle filters, it is assumed that
ε ≤ p(x, z) ≤ ε−1 with ε > 0. For the local assumption ε ≤ pv(x, zv) ≤ ε−1, however,
it is not sufficient to assume that ε > 0; we must assume that ε > ε0 for some strictly
positive threshold ε0 > 0. Some assumption of this form is absolutely essential in
the high-dimensional setting. Unlike the global mixing assumption, the local mixing
assumption is not in itself sufficient to ensure that the underlying model will remain
ergodic as the dimension cardV → ∞: the cumulative effect of the interactions can
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create long-range correlations that break both ergodicity and any decay of correlations
properties. Typically, the model is ergodic when the mixing constant ε is sufficiently
large, but ergodicity breaks abruptly as ε drops below a threshold value ε0. Such
phenomena, called phase transitions in statistical mechanics, are very common in
large-scale interacting systems: see [35, 16] for a number of examples. When the
underlying model fails to exhibit ergodicity and decay of correlations, we lack the
mechanism that we aim to exploit by developing local particle filters. Therefore,
some assumption of the form ε > ε0 is essential in Theorem 4.2 in order to ensure the
presence of decay of correlations.

Unfortunately, the actual constant ε0 that arises in the proof of Theorem 4.2 is
almost certainly far from optimal. The Dobrushin machinery (Theorem 2.11) that
forms the basis of our proof already does not yield sharp estimates of the phase
transition point even in the simplest classical models of statistical mechanics. It is
also far from clear whether the block particle filter should necessarily possess the
same phase transition point as the underlying model: it may be that the algorithm
only works in a strict subset of the regime in which the underlying model possesses
the decay of correlations property. The mathematical tools used in this chapter are
not sufficiently powerful to address much more delicate questions of this type. The
practical relevance of Theorem 4.2 is therefore of a qualitative nature—we show that
the block particle filter can beat the curse of dimensionality above a certain phase
transition point—but should not be relied upon to provide quantitative guidance
in specific situations. It remains of substantial interest to weaken the assumptions
of Theorem 4.2 and to obtain sharper quantitative results; further progress in this
direction will require the development of a more sophisticated probabilistic toolbox
for the investigation of filtering problems in high dimension.

It should be noted that the problems investigated in this chapter are closely related
to fundamental properties of conditional distributions. We have implicitly taken for
granted that the filter will be stable when the underlying model is ergodic (and
similarly for the decay of correlations property), but it is far from obvious that such
properties are in fact preserved under conditioning on the observations. While the
inheritance of ergodic properties under conditioning can be proved in a very general
setting for models with finite-dimensional observations (see [52] and the references
therein), we will see in Chapter 7 that there exist surprising examples in infinite
dimension where the filter is non-ergodic even though the underlying model is ergodic
and nondegenerate. Such probabilistic phenomena remain poorly understood. The
threshold assumption ε > ε0 rules out such issues in the setting of this chapter.

4.4.2 Ergodicity in space and time

The intuition behind the block particle filtering algorithm is that the localization con-
trols the sampling error (as it replaces the model dimension cardV by the block size
|K|∞), while the decay of correlations property of the model controls the localization
error (as it ensures that the effect of the localization decreases in the distance to the
block boundary). This intuition is clearly visible in the conclusion of Theorem 4.2.
It is however not automatically the case that our model does indeed exhibit decay of
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correlations: when there are strong interactions between the vertices, phase transi-
tions can arise and the decay of correlations can fail much as for standard models in
statistical mechanics [35], in which case we cannot expect to obtain dimension-free
performance for the block particle filter. Such phenomena are ruled out in Theo-
rem 4.2 by the assumption that ε ≤ pv ≤ ε−1 for ε > ε0, which ensures that the
interactions in our model are sufficiently weak.

It is notoriously challenging to obtain sharp quantitative results for interacting
models, and it is unlikely that one could obtain realistic values for the constants in
Theorem 4.2 at the level of generality considered here. More concerning, however, is
that the weak interaction assumption of Theorem 4.2 is already unsatisfactory at the
qualitative level, as decay of correlations in space and time are treated on the same
footing: as ε → 1, both the spatial and temporal correlations disappear. Note that
there is no interaction between the vertices in the extreme case ε = 1; the assumption
ε > ε0 should be viewed as a perturbation of this situation (i.e., weak interactions).
However, setting ε = 1 turns off not only the interaction between different vertices,
but also the interaction between the same vertex at different times: in this setting the
dynamics of the model become trivial. In contrast, one would expect that it is only
the strength of the spatial interactions, and not the local dynamics, that is relevant
for dimension-free errors, so that Theorem 4.2 places an unnatural restriction on our
understanding of block particle filters.

It is therefore of interest to separate the temporal and spatial ergodicity assump-
tions, for example, by replacing the assumption ε ≤ pv(x, zv) ≤ ε−1 by an assumption
of the form ε qv(xv, zv) ≤ pv(x, zv) ≤ ε−1qv(xv, zv) that only controls the spatial in-
teractions, where the transition density qv describes the local dynamics at the vertex
v in the absence of interactions. Rather than assuming pv(x, zv) ≈ 1 as in Theorem
4.2, we would like to assume only that the spatial interactions are weak in the sense
that pv(x, zv) ≈ qv(xv, zv).

Overcoming this deficiency behind Theorem 4.2 requires the development of more
refined comparison theorems than the Dobrushin comparison theorem that is used
repeatedly for the results presented in this chapter (see Section 4.5.2 below). This
new toolbox is of its own interest, and it will be the subject of Chapter 6. The
analysis of the block particle filter on the basis of the new comparison theorems will
yield Theorem 6.13, which improves qualitatively Theorem 4.2.

4.4.3 Local algorithms and spatial homogeneity

The major drawback of the block particle filtering algorithm is the spatial inhomo-
geneity of the bias. As was explained in Section 4.3, the block particle filter introduces
errors at the block boundaries. We will increase the size of the blocks as the number
of particles N increases, so that more points are distant from the block boundaries
and therefore benefit from the decay of correlations. Nonetheless, points near the
boundary will always be subject to larger errors, and we can only hope to implement
the intuition of Section 4.2 to spatial locations that are strictly in the interior of the
blocks.
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The consequences of this inhomogeneity are manifested quantitatively in Corollary
4.6. Near the block boundaries, Theorem 4.2 gives a bound of order unity. By exclud-
ing a small fraction of spatial locations, however, we eliminate the block boundaries
to retain an error of order e−c log1/q N at “most” spatial locations:

card
{
v ∈ V : |||πxn − π̂xn|||v . e−cδ log1/q N

}
≥ (1− δ) cardV.

If, on the other hand, we compute the spatial average of the error, we obtain an
exceedingly slow convergence rate that is much worse than the “typical” rate:

1

cardV

∑

v∈V

|||πxn − π̂xn|||v .
1

log1/qN
.

Note that the block boundaries constitute a fraction ∼ 1/b of spatial locations, where
b is the block size; therefore, as b ∼ log1/qN in Corollary 4.6, we see that the error
at the block boundaries dominates our bound on the average error.

The behavior of the errors described above seems to be an inherent limitation of
the block particle filtering algorithm. It is therefore of significant interest to explore
the possibility that one could develop alternative local particle filtering algorithms
that are spatially homogeneous. Conceptually, as explained in Section 4.2, such
an algorithm should update the filtering distribution at each site v using sites in a
centered neighborhood Nb(v) := {v′ ∈ V : d(v, v′) ≤ b}; the decay of correlations
should then yield a bias that decays exponentially in b. In this case, we would expect
to obtain a spatially uniform error bound of the form

sup
v∈V
|||πxn − π̂xn|||v . e−c log1/q N

for the optimized neighborhood size b ∼ log1/qN . Whether it is in fact possible to
design a local particle filtering algorithm that attains such a uniform error bound is
still an open question. Chapter 5 is devoted to discussing one possible idea that could
be of interest in this setting.

4.4.4 High-dimensional models in data assimilation

The basic model that we have introduced in Section 4.1 is prototypical of many data
assimilation problems and provides a particularly convenient mathematical setting for
the investigation of filtering problems in high dimension. While such models could be
directly relevant to many high-dimensional applications, there remains a substantial
gap between relatively simple models of this form and realistic models used in the
most complex applications, particularly in the geophysical, atmospheric and ocean
sciences, that frequently consist of coupled systems of partial differential equations.
The investigation of such complex problems, and the associated numerical, physical,
and practical issues, is far beyond the scope of this thesis. We therefore restrict our
discussion of such problems to a few brief comments.

In principle, discrete models as defined in Section 4.1 arise naturally as finite-
difference approximations of stochastic partial differential equations with space-time
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white noise forcing. As the resulting state spaces Xv are not compact, such systems
cannot satisfy strong mixing assumptions (cf. Section 4.4.1), but this is likely a math-
ematical rather than a practical problem. More importantly, it is not clear whether
the discretized models will be in the regime of decay of correlations (that is, above
the phase transition point) even if the original continuum model possesses such prop-
erties. It is possible that this requirement would place constraints on the spatial and
temporal discretization steps, in the spirit of the von Neumann stability criterion in
numerical analysis. The physics of such problems could also impose constraints on
the design of local particle filters; for example, it is suggested in [60, p. 4107] that
discontinuities (such as might be introduced at the block boundaries in the block
particle filtering algorithm) could generate spurious gravity waves in ocean models.
Such numerical and practical issues are distinct from the fundamental problems in
high dimension that we aim to address in this thesis, but can ultimately play an
equally important role in complex applications.

Let us also note that models considered in the data assimilation literature are often
deterministic partial differential equations without stochastic forcing; the only ran-
domness in such models comes from the initial condition (cf. [34, 1]). In deterministic
chaotic dynamical systems, it is impossible to obtain time-uniform approximations
using classical particle filters as there is no dissipation mechanism for approximation
errors (the filter cannot be stable in this case, cf. Section 4.5.1). This issue is not di-
rectly related to dimensionality issues in particle filters: such problems arise in every
deterministic filtering problem. It is natural to regularize deterministic systems by
adding dynamical noise to the model (there is an extensive literature on random per-
turbations of chaotic dynamics, see for example [6]); a similar observation has been
made by practitioners in the context of ad-hoc filtering algorithms, cf. [34, section 5].
To our knowledge, a rigorous analysis of such ideas in the setting of particle filters
has yet to be performed.

4.5 Outline of the proof: framework behind local

particle filters

In this section we discuss the outline of the proof of the main result of this chapter,
Theorem 4.2. While this discussion is tailored to the analysis of the block particle
filter, the ideas here developed constitute the backbone of a more general framework
that encompasses a new philosophy behind filtering in high dimension. The details
of the proof of Theorem 4.2 will then be given in Appendix A.

4.5.1 Error decomposition

The goal of Theorem 4.2 is to bound the error between the filter πµn and the block
particle filter π̂µn. Recall that both the filter (Section 3.1) and block particle filter
(Section 4.3) are defined recursively:

πµn = Fn · · · F1µ, π̂µn = F̂n · · · F̂1µ,
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where Fn := CnP and F̂n := CnBS
NP. We introduce also the block filter

π̃µn := F̃n · · · F̃1µ

with F̃n := CnBP. By the triangle inequality, we have

|||πµn − π̂µn|||J ≤ |||πµn − π̃µn|||J︸ ︷︷ ︸
bias

+ |||π̃µn − π̂µn|||J︸ ︷︷ ︸
variance

.

The first term on the right-hand side quantifies the bias introduced by the projection
on independent blocks, while the second term quantifies the error due to the variance
of the random sampling in the algorithm. Each term will be bounded separately to
obtain the two terms in the error bound of Theorem 4.2.

The challenges encountered in bounding the bias term (cf. Section 4.5.3) and the
variance term (cf. Section 4.5.4) are quite different in nature. Nonetheless, both
bounds are based on a basic scheme of proof that was invented in order to prove
time-uniform bounds for the SIR particle filter [15, 8], see Section 3.3.1. We therefore
begin by reviewing this general idea, which is based on a simple error decomposition.

Suppose for sake of illustration that we aim to bound directly the error between
πµn and π̂µn. The basic idea is to write πµn − π̂µn as a telescoping sum:

πµn − π̂µn =
n∑

s=1

{Fn · · · Fs+1FsF̂s−1 · · · F̂1µ− Fn · · · Fs+1F̂sF̂s−1 · · · F̂1µ}.

By the triangle inequality,

|||πµn − π̂µn||| ≤
n∑

s=1

|||Fn · · · Fs+1Fsπ̂
µ
s−1 − Fn · · · Fs+1F̂sπ̂

µ
s−1|||.

The term s in this sum could be interpreted as the contribution to the total error at
time n due to the filter approximation made at time s.

The key insight is now that one can employ the filter stability property to control
this sum uniformly in time. In its simplest form, this property can be proved in the
following form (see Theorem 3.7): if ε ≤ p(x, z) ≤ ε−1 for all x, z ∈ X, then

|||Fn · · · Fs+1ρ− Fn · · · Fs+1ρ
′||| ≤ 2 ε−2(1− ε2)n−s|||ρ− ρ′|||.

Thus, the filter forgets its initial condition at an exponential rate. However, this
also means that past approximation errors are forgotten at an exponential rate: if we
substitute the stability property in the above error decomposition, we obtain

|||πµn − π̂µn||| ≤
n∑

s=1

2 ε−2(1− ε2)n−s|||Fsπ̂µs−1 − F̂sπ̂
µ
s−1||| ≤ 2 ε−4 sup

n,ρ
|||Fnρ− F̂nρ|||.

Thus, if we can control the error |||Fnρ− F̂nρ||| in a single time step, we obtain a
time-uniform bound of the same order. In the case of the SIR particle filter, if
κ ≤ g(x, y) ≤ κ−1, we proved in Section 3.1 that |||Fnρ− F̂nρ||| ≤ 2κ−2/

√
N .
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The basic error decomposition discussed above allows us to separate the problem
of obtaining time-uniform bounds into two parts: the one-step approximation error
and the stability property. It is important to note, however, that both parts become
problematic in high dimension. We have already seen (Section 3.3.2) that the one-step
approximation error of the SIR particle filter is exponential in the model dimension;
we will surmount this problem by working with the block particle filtering algorithm
and performing a local analysis of the one-step error using the decay of correlations
property (which must itself be established). On the other hand, the filter stability
bound used above also becomes exponentially worse in high dimension: a local bound
of the form ε ≤ pv(x, zv) ≤ ε−1 only yields εcardV ≤ p(x, z) ≤ ε− cardV , which is
exponential in the model dimension cardV . To surmount this problem, we must
develop a much more precise understanding of the filter stability property in high
dimension, which proves to be closely related to the decay of correlations property.
The development of these ingredients constitutes the bulk of the proof of Theorem
4.2.

4.5.2 Dobrushin comparison method

How can one control the approximation error of high-dimensional distributions? The
basic idea that we aim to exploit, both algorithmically and mathematically, is that
the decay of correlations property leads to a form of localization: the effect on the
distribution in some spatial set J of a perturbation made in another set J ′ decays
rapidly in the distance d(J, J ′). Therefore, as long as we measure the error locally
(in |||·|||J rather than |||·|||), one would hope to control the spatial accumulation of
approximation errors much as we controlled the accumulation of approximation errors
in time using the filter stability property.

The Dobrushin comparison theorem (Theorem 2.11) introduced in Section 2.4 is
the tool that will allow us to characterize the crucial way in which the decay of cor-
relations property enters the picture. In the current setting, a useful manifestation of
the decay of correlations property is that the matrix D from the comparison theorem
is such that Dij decays exponentially in the distance d(i, j). If this is in fact the case,
then Theorem 2.11 yields, for example, ‖ρ − ρ̃‖i .

∑
j e
−d(i,j)bj, where bj measures

the local error at site j between ρ and ρ̃ (in terms of the conditional distributions ρj·
and ρ̃j· ). The decay of correlations property therefore controls the accumulation of
local errors much as one might expect.

Let us now explain how Theorem 2.11 will be applied in the filtering setting. For
sake of illustration, consider the problem of obtaining a local filter stability bound:
that is, we would like to bound ‖πxn − πx̃n‖J for x, x̃ ∈ X and J ⊆ V . It would seem
natural to apply Theorem 2.11 directly with I = V , S = X, and ρ = πxn, ρ̃ = πx̃n.
This is not useful, however, as we do not know how to control the corresponding local
quantities such as ρvz = Px(Xv

n ∈ · |Y1, . . . , Yn, X
V \{v}
n = zV \{v}).

Instead, define I = {0, . . . , n} × V and S = Xn+1, and let

ρ = Px(X0, . . . , Xn ∈ · |Y1, . . . , Yn),

ρ̃ = Px̃(X0, . . . , Xn ∈ · |Y1, . . . , Yn).
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As
‖πxn − πx̃n‖J = ‖ρ− ρ̃‖{n}×J ,

we can now apply Theorem 2.11 to the smoothing distributions ρ, ρ̃. Unlike the filters
πxn, π

x̃
n, however, ρ and ρ′ are Markov random fields on I (cf. Figure 4.1), so that the

conditional distributions ρk,vz and ρ̃k,vz can be easily computed and controlled in terms
of the local densities pv(x, zv) and gv(xv, yv). For example, as

ρ(A) ∝
∫

1A(x, x1, . . . , xn)
n∏

k=1

∏

v∈V

pv(xk−1, x
v
k) g

v(xvk, Y
v
k )ψv(dxvk),

and as pv(xk−1, x
v
k) depends only on xwk−1 for d(w, v) ≤ r, we obtain

ρk,vz (B) ∝
∫

1B(zvk) p
v(zk−1, z

v
k) g

v(zvk , Y
v
k )

∏

w∈N(v)

pw(zk, z
w
k+1)ψv(dzvk)

for 0 < k < n and v ∈ V (the proportionality is up to a normalization factor).
We will repeatedly exploit expressions of this type to obtain explicit bounds on the
quantities Cij and bj that appear in Theorem 2.11. It should be emphasized that
ρk,vz is a genuinely local quantity: the product inside the integral contains at most
cardN(v) ≤ ∆ terms. We will consequently be able to use Theorem 2.11 to obtain
bounds that do not depend on the model dimension cardV .

Remark 4.9. In the language of statistical mechanics, we exploit the fact that the
smoothing distribution Px(X0, . . . , Xn ∈ · |Y1, . . . , Yn) is a Gibbs measure [27] on the
space-time index set I = {0, . . . , n} × V . Similar insight has proved to be fruitful in
the ergodic theory of large-scale interacting Markov chains, cf. [35].

4.5.3 Bounding the bias: decay of correlations

To bound the bias ‖πxn − π̃xn‖J , we follow the basic error decomposition scheme de-
scribed above: that is,

‖πxn − π̃xn‖J ≤
n∑

s=1

‖Fn · · · Fs+1Fsπ̃
x
s−1 − Fn · · · Fs+1F̃sπ̃

x
s−1‖J .

To implement our program, we must now obtain suitable local bounds on the stability
of the filter and on the one-step approximation error. Both these problems will be
approached by application of the Dobrushin comparison theorem.

In its most basic form, one can prove a filter stability property of the following
type: provided ε > ε0, there exists β > 0 (depending only on ∆ and r) such that

‖Fn · · · Fs+1µ− Fn · · · Fs+1ν‖J ≤ 4 card J e−β(n−s)

for any probability measures µ, ν on X and J ⊆ V , n ≥ 0 (cf. Corollary A.5). This
bound is evidently dimension-free, unlike the crude filter stability bound described
in Section 4.5.1. Nonetheless, this filter stability bound would yield a trivial result
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when substituted in the error decomposition, as it does not provide any control in
terms of the distance between µ and ν (and therefore in terms of the one-step error).
Instead, we will prove in Section A.1 the local stability bound

‖Fn · · · Fs+1µ− Fn · · · Fs+1ν‖J ≤ 2e−β(n−s)
∑

v∈J

max
v′∈V

e−βd(v,v′)Dv′(µ, ν),

where Dv′(µ, ν) is a suitable measure of the local error between µ and ν at site v′

that arises naturally from the Dobrushin comparison theorem (see Proposition A.2
for precise expressions). This filter stability bound is genuinely local: the stability
on the spatial set J ⊆ V depends predominantly on the local distance of the initial
conditions near J (that is, the spatial accumulation of errors is mitigated). This
localization comes at a price, however; the local filter stability bound holds only if
the initial condition µ satisfies a priori a decay of correlations property.

Once the local filter stability bound is substituted in the error decomposition, it
remains to prove a bound on the one-step error Dv(Fsπ̃

x
s−1, F̃sπ̃

x
s−1) with respect to the

local distance prescribed by the filter stability bound. This will be done in Section
A.2: we will show that for a constant C that depends only on ∆, r, ε,

Dv(Fsµ, F̃sµ) ≤ C e−βd(v,∂K)

for every K ∈ K and v ∈ K, provided again that µ satisfies a priori a decay of
correlations property. This is precisely what we expect: as B only introduces errors
at the block boundaries, the decay of correlations should ensure that the error at site
v decays exponentially in the distance to the nearest block boundary. The Dobrushin
comparison theorem allows to make this intuition precise.

The decay of correlations property evidently plays a dual role in our setting:
it controls the approximation error of the block filter, which is the basic principle
behind the block particle filtering algorithm; at the same time, it mitigates the spatial
accumulation of approximation errors, which is essential for proving dimension-free
bounds. In order to apply the above bounds, the key step that remains is to prove
that the appropriate decay of correlations property does in fact hold, uniformly in
time, for the block filter π̃xn. The latter will be shown in Section A.3 by iterating a
one-step decay of correlations bound that is obtained once again using the Dobrushin
comparison theorem. We conclude by putting together all these ingredients in Section
A.4 to obtain a bound on the bias of the form

‖πxn − π̃xn‖J ≤ C card J e−βd(J,∂K)

for J ⊆ K (Theorem A.12). This proves the first half of Theorem 4.2 (note that,
as the bias does not depend on the random sampling in the block particle filtering
algorithm, we can trivially replace ‖πxn − π̃xn‖J by |||πxn − π̃xn|||J in this bound).
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Figure 4.4: For a linear spatial graph G partitioned into blocks A–E (with r = 1),
the dependencies between the blocks at subsequent times are illustrated here. The
left dependency graph represents BCP2µ, the right graph represents BCPBPµ. The
blocking operation unravels the original graph into a tree by introducing indepen-
dent duplicates (dotted boxes) of blocks in the previous time step.

4.5.4 Bounding the variance: the computation tree

To bound the variance term |||π̃xn − π̂xn|||J , we once again start from the basic error
decomposition

|||π̃xn − π̂xn|||J ≤
n∑

s=1

|||F̃n · · · F̃s+1F̃sπ̂
x
s−1 − F̃n · · · F̃s+1F̂sπ̂

x
s−1|||J .

The difficulties encountered in controlling this expression are quite different in nature,
however, than what was needed to control the bias term.

Dimension-free bounds on the bias exploit decay of correlations: the core difficulty
is to obtain local control of the error inside the blocks. The variance term, on the other
hand, will already grow exponentially in the size of the blocks due to the exponential
dependence of the sampling error on the dimension of the observations. There is
therefore no need bound the error on a finer scale than a single block. This makes the
analysis of the variance much less delicate than controlling the bias, and it is indeed
not difficult to obtain a variance bound of the right order on a finite time horizon
(but growing exponentially in time n).

The chief difficulty in controlling the variance is to obtain a time-uniform bound.
Note that, in the error decomposition for the variance term, it is not stability of the
filter πµn that enters the picture but rather stability of the block filter π̃µn. Unlike
the filter, however, which has by construction an interpretation as the marginal of a
smoothing distribution, the block filter is defined by a recursive algorithm and not as
a conditional expectation. It is therefore not entirely obvious how one could adapt
the approach outlined in Section 4.5.2 to this setting.

The key idea that will be used to establish stability is that the block filter can
nonetheless be viewed as the marginal of a suitably defined Markov random field,
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just like the filter can be viewed as the marginal of a smoothing distribution. This
random field, however, lives on a much larger index set than the original model.
The basic idea behind the construction is illustrated in Figure 4.4 (disregarding the
observations for simplicity of exposition). When we apply the transition operator P,
each block interacts with its ∆K neighbors in the previous time step. However, if
we subsequently apply the blocking operator B, then each block is replaced by an
independent copy. This could be modelled equivalently by introducing independent
duplicates of the blocks in the previous time step, and having each block interact
with its own set of duplicates. This unravels the original dependency graph into a
tree. By iterating this process, we can express the block filter as the marginal of a
Markov random field defined on a tree that contains many independent duplicates of
each block. We call this construction the computation tree in analogy with a similar
notion that arises in the analysis of belief propagation algorithms [50].

With this construction in place, we can now obtain a stability bound for the block
filter by applying the Dobrushin comparison theorem to the computation tree. This
will be done in Section A.5 to obtain a bound of the following form: provided ε > ε0,
there exist β, β′ > 0 (depending only on ∆,∆K, r) such that

max
K∈K
‖F̃n · · · F̃s+1µ− F̃n · · · F̃s+1ν‖K ≤ eβ

′|K|∞e−β(n−s) max
K∈K
‖µK − νK‖

for any pair of initial conditions of product form µ =
⊗

K∈K µ
K , ν =

⊗
K∈K ν

K (cf.
Corollary A.16). Combining this bound with the error decomposition, we obtain in
Section A.6 a time-uniform bound on the variance term of the form

max
K∈K
|||π̃xn − π̂xn|||K ≤ C

eβ
′|K|∞
√
N

,

where we bound the one-step error in the same spirit as the computation for the SIR
particle filter in Section 3.1 (however, a more involved argument is needed here to
surmount the fact that the block filter stability bound is given in a total variation
norm rather than the weaker norm |||·|||K). Thus Theorem 4.2 is proved.

Remark 4.10 (Alternative error decomposition). The reason we must consider sta-
bility of the block filter is that we have first split the error into the bias |||πxn − π̃xn|||J
and variance |||π̃xn − π̂xn|||J parts, and then applied the error decomposition to each term
separately. One might hope to circumvent the problem by applying the error decom-
position directly to the total error |||πxn − π̂xn|||J as was illustrated in Section 4.5.1, and
then splitting the one-step error terms in this bound into bias and variance parts:

|||Fn · · · Fs+1Fsπ̂
µ
s−1 − Fn · · · Fs+1F̂sπ̂

µ
s−1|||J

≤ |||Fn · · · Fs+1Fsπ̂
µ
s−1 − Fn · · · Fs+1F̃sπ̂

µ
s−1|||J

+ |||Fn · · · Fs+1F̃sπ̂
µ
s−1 − Fn · · · Fs+1F̂sπ̂

µ
s−1|||J .

In this case, only stability of the filter is needed to control the error accumulation.
Unfortunately, using this simpler approach it is impossible to obtain a nontrivial

bound on the bias. Indeed, to control the one-step bias Dv(Fsµ, F̃sµ), it is essential that
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µ satisfies a decay of correlations property. In Section 4.5.3, the error decomposition
required us to obtain such a bound for µ = π̃xs−1, and we showed that the block filter
does indeed possess the requisite decay of correlations property. On the other hand, if
we apply the error decomposition to the total error as above, one would have to obtain
such a bound for µ = π̂xs−1. This is impossible, as π̂xs−1 cannot possess a useful decay
of correlations property within the blocks.

To see this, consider what happens when we apply the Dobrushin comparison the-
orem to an empirical measure ρ = 1

N

∑N
k=1 δXk with Xk i.i.d. ∼ ν. Suppose that

ν =
⊗

i∈I ν
i for some (nonatomic) measures νi: this is the extreme case where ν has

no spatial correlations at all. Nonetheless, the empirical measure ρ will be maximally
correlated: as each X i

k is distinct with unit probability, we obtain ρiX = δXi for every
X ∈ {X1, . . . , XN}, so that Cij = 1 for every i 6= j in Theorem 2.11. We therefore
see that sampling destroys decay of correlations (this is, in essence, the same phe-
nomenon that causes the curse of dimensionality of particle filters). For this reason,
it is essential to consider the bias and variance terms separately.
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Chapter 5

Localized Gibbs sampler particle
filter

This chapter is devoted to introducing a particle filter algorithm that implements
a spatially homogeneous localization to overcome the curse of dimensionality, hence
addressing the main drawback of the block particle filter analyzed in the previous
chapter. While a complete analysis of this algorithm is still missing, we prove a
one-step error bound for the bias term that illustrates the mechanism that can
provide spatially homogenous approximations of the filter distribution. The goal of
this chapter is also to show that the general idea of local particle filters is much
broader than is suggested by the block particle filtering algorithm, and that the
mathematical analysis developed in this thesis could in itself provide inspiration for
further methodological developments. The material presented in this chapter is new
and has not been submitted to publication yet.

Henceforth, we assume to work in the same setting introduced in Section 4.1.

5.1 Motivations

The block particle filter was introduced in Section 4.3 by localizing the SIR particle
filter recursion π̂n = CnS

NPπ̂n−1 to π̂n = CnBS
NPπ̂n−1, via the blocking operator

B that projects probability measures to the product of their marginals over a fix
partition K of the vertex set V .

At the heart of our main result (Theorem 4.2) lies the decay of correlations. In the
proofs there we used an intuitive notion of decay of correlations of essentially the fol-
lowing form: a probability measure ρ on X =

∏
v∈V Xv possesses the decay of correla-

tions property if the effect on the conditional distribution ρ(Xv ∈ · |XV \{v} = xV \{v})
of a perturbation to xv

′
decays exponentially in the distance d(v, v′) (cf. Sections 4.5.2

and A.1). The blocking operation evidently replaces these conditional distributions
by

(Bρ)(Xv ∈ A|XV \{v} = xV \{v}) = ρ(Xv ∈ A|XK\{v} = xK\{v})
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for every K ∈ K and v ∈ K. Therefore, if ρ possesses the decay of correlations
property, then the bias at site v ∈ K incurred by the blocking operation decays
exponentially in the distance between v and the boundary of K. On the other hand,
the sampling error depends only on the dimension of the block, and not on the
dimension of the entire system.

As we discussed in Section 4.4 (particularly in Section 4.4.3), the major draw-
back of the block particle filtering algorithm is precisely the spatial inhomogeneity
of the bias, as the blocking introduces errors at the block boundaries: points near
the boundaries will always be subject to larger errors. On the one hand, it is true
that by optimizing the error bound in Theorem 4.2 we find that the size of the blocks
increases as the number of particles N increases, so that more points are distant
from the block boundaries and therefore benefit from the decay of correlations. On
the other hand, our theory suggests that the size of the blocks typically increases
slowly (logarithmically) with the number of particles (see Corollary 4.6 for a concrete
example), so that we should not consider large blocks.

From this perspective, an approach to spatially homogeneous algorithms readily
suggests itself: we should aim to replace B with another operator M that satisfies

(Mρ)(Xv ∈ A|XV \{v} = xV \{v}) = ρ(Xv ∈ A|XNb(v)\{v} = xNb(v)\{v})

for every v ∈ V , where Nb(v) := {v′ ∈ V : d(v, v′) ≤ b}. The bias incurred by
this operation decays exponentially in b uniformly for all v (it is therefore spatially
homogeneous). On the other hand, as

(CnMPρ)(Xv ∈ A|XV \{v} = xV \{v}) =∫
1A(xv) gv(xv, Y v

n )
∏

w∈Nb(v) p
w(z, xw) ρ(dz)ψv(dxv)∫

gv(xv, Y v
n )
∏

w∈Nb(v) p
w(z, xw) ρ(dz)ψv(dxv)

,

the sampling error incurred if we replace ρ by SNρ in this expression should only be
exponential in cardNb(v) (which is ∼ bq for the square lattice) rather than in the
model dimension cardV . This suggests that the local particle filter defined by the re-
cursion F̂n = SNCnMP should yield a spatially homogeneous algorithm in accordance
with our intuition.

To implement this algorithm one needs to sample from the measure CnMPρ, which
we have defined only implicitly in terms of its conditional distributions. However, this
is precisely the task to which Markov chain Monte Carlo (MCMC) methods are well
suited. These methods sample from a probability measure by constructing a Markov
chain that has the desired measure as its equilibrium distribution. In particular, the
Gibbs sampler (Section 5.2 below) is a MCMC method that implements this paradigm
by using transition kernels that are defined in terms of the conditional distributions
of the desired measure.

One would therefore ostensibly obtain a spatially homogeneous local particle fil-
tering algorithm that is recursive in time and that uses MCMC to sample the spatial
degrees of freedom (regularization using M is still key to avoiding the curse of di-
mensionality, as replacing the sampling step in ordinary particle filters by an MCMC
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method does not resolve the fundamental problem that we face in high dimension;
see [3] for related discussion).

Conceptually, the idea introduced here is quite natural. The general idea of lo-
cal particle filters is that one should introduce a spatial regularization step into the
filtering recursion that enables local sampling. In the block particle filter, this regu-
larization is provided by the blocking operation B that projects a probability measure
on the class of measures that are independent across blocks. In the above algorithm,
we aim to regularize instead by the operation M that projects a probability measure
on the class of Markov random fields of order b. The fatal flaw in our reasoning is
that the operator M that we have defined implicitly above does not exist: the trun-
cated conditional distributions ρ(Xv ∈ · |XNb(v)\{v} = xNb(v)\{v}) are typically not
consistent, so there exists no single probability measure that satisfies our definition
of Mρ.

Nonetheless, the basic idea just discussed suggests a practical approach to ap-
proximating random fields by Markov random fields: we can substitute the above
expression for (CnMPρ)(Xv ∈ · |XV \{v}) in a Gibbs sampler regardless of its incon-
sistency. The algorithm that we will introduce in this chapter, the localized Gibbs
sampler particle filter, exactly implements this idea to yield spatially homogeneous
estimates of the filter distribution.

While the analysis of the block particle filter relies heavily on the Dobrushin com-
parison theorem (Theorem 2.11), the analysis of the localized Gibbs sampler particle
filter relies crucially on the one-sided Dobrushin comparison theorem (Theorem 2.12),
which is needed to capture the directionality of time embedded in the definition of
Gibbs samplers. Following the same bias/variance decomposition scheme adopted in
Chapter 4, we will prove a spatially homogeneous one-step error bound for the bias
of the localized Gibbs sampler particle filter (Theorem 5.4).

While this result is extremely encouraging, the analysis of the localized Gibbs
sampler particle filter has proved to be much more challenging than the analysis of
the block particle filter, and a complete picture is still lacking. With respect to the
proof strategy followed in Chapter 4, the crucial difficulty lies in establishing a decay
of correlations property for the approximate filter that is uniform in time. While
we have strong reasons to believe that this property should hold, it seems that the
Dobrushin comparison theorems are not adequate to capture it. A more delicate
analysis is needed, with new tools to be developed.

5.2 Gibbs sampler

The backbone of the localized Gibbs sampler particle filter is the Gibbs sampler,
a MCMC algorithm that samples from a high-dimensional distribution ρ on X by
sampling iteratively from the low-dimensional distributions ρ(Xv ∈ · |XV \{v}), v ∈ V .
Henceforth in this chapter, label the elements of V as {v1, . . . , vd}, where d = cardV ,
and introduce the notation vk : vk′ := {vk, vk+1 . . . , vk′}. The systematic-scan Gibbs
sampler is the algorithm described in Figure 5.1.
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Algorithm 4: Systematic-scan Gibbs sampler

Data: Fix m ≥ 1, χ probability measure on X.
Let X0 ∼ χ;
for ` = 1, . . . ,m do

for k = 1, . . . , d do
Sample Xvk

` ∼ ρ(Xvk ∈ · |Xv1:vk−1 = X
v1:vk−1

` , Xvk+1:vd = X
vk+1:vd
`−1 );

Output: Xm.

Figure 5.1: Systematic-scan Gibbs sampler.

As described in Figure 5.1, in the `-th round of the algorithm (that is needed to
sample X`) each coordinate Xv

` is cyclically obtained by sampling from the conditional

distribution given all other coordinates X
V \{v}
` . The cyclic sampling occurs system-

atically, following the ordering given by v1, . . . , vd
1. Each round of the algorithm is

usually referred to as a sweep of the algorithm.

The Gibbs sampler is a MCMC method that constructs a Markov chain (Xn)n≥0

that admits ρ as its invariant measure (by construction ρ satisfies ρ = ρP , where
P is the transition kernel of the Markov chain). The main rationale is that if the
Markov chain is quickly converging to equilibrium (rapidly mixing), then for large m
we can reliably interpret Xm—the output of the algorithm in Figure 5.1—as a random
variable whose distribution is close to ρ. We refer to [8] for an extensive treatment of
MCMC methods in the context of filtering theory.

To facilitate the description of what follows, we introduce the (systematic-scan)
Gibbs sampler sampling operator.

Given a probability measure ρ on X and v ∈ V , let Gv
ρ be the transition kernel

defined as follows

Gv
ρ(x,A) :=

∫
ρ(Xv ∈ dωv|XV \{v} = xV \{v}) δxV \{v}(dω

V \{v}) 1A(ω).

Definition 5.1 (Gibbs sampler sampling operator). Let χ be a probability measure
on X. Define the Gibbs sampler sampling operator SN,mχ as

SN,mχ ρ = SN(χGv1
ρ · · ·Gvd

ρ )m =
1

N

N∑

i=1

δX(i),

where X(1), . . . , X(N) are i.i.d. samples—each obtained by running the algorithm
described in Figure 5.1 with respect to the family of conditional distribution (ρ(Xv ∈
· |XV \{v}))v∈V —for m sweeps and with initial distribution χ. SN is the sampling
operator defined in Definition 2.16 (see Section 3.3 for a discussion on how to sample
from Markov chains).

1Other sampling schemes can be considered, such as uniformly sampling d-times the elements of
V at each round of the algorithm. This gives rise to the so-called random-scan Gibbs sampler.
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Remark 5.2. In the literature on Gibbs samplers the typical empirical measure that
is considered has the following form

1

N

N−1∑

k=0

δXn0+k`
,

where (Xn)n≥0 is the Markov chain generated by the algorithm in Figure 5.1, n0 is the
so-called burn-in period that represents the amount of time it takes for the Markov
chain to reach its invariant distribution (which is the measure we want to sample
from), and ` is the period at which samples are taken into consideration (so to have
samples that are close to being independent). On the other hand, in Definition 5.1 we
consider samples that are independent by construction so to simplify the theoretical
analysis of the algorithm.

5.3 Gibbs sampler particle filter

As the block particle filter was introduced by localizing the SIR particle filter recur-
sion, also the local algorithm that we analyze in this chapter comes as a localization of
another particle filter—the Gibbs sampler particle filter—that we presently introduce.

Fix N,m ≥ 1. We define the Gibbs sampler particle filter recursion as follows:

π̂µ0 := µ, π̂µn := SN,m
π̂µn−1

CnPπ̂
µ
n−1 (n ≥ 1),

where the recursion consists of three steps

π̂µn−1

prediction

−−−−−→ Pπ̂µn−1

correction

−−−−−→ CnPπ̂
µ
n−1

MCMC
sampling

−−−−−→ π̂µn := SN,m
π̂µn−1

CnPπ̂
µ
n−1.

In Lemma 5.3 below we prove that under the usual mixing conditions considered
in Chapter 4 (ε ≤ pv ≤ ε−1 for 0 < ε < 1), as the number of sweeps m goes to
infinity the Gibbs sampler particle filter recursion π̂µn = SN,m

π̂µn−1
CnPπ̂

µ
n−1 converges to

the “optimal” SIR particle filter recursion π̂µn = SNCnPπ̂
µ
n−1 (cf. Remark 3.13). For

this reason we have not introduced a separate notation for the Gibbs sampler particle
filter and the SIR particle filter introduced in Chapter 3.

Presently, we illustrate one possible implementation of this algorithm. Let

π̂µn−1 =
1

N

N∑

i=1

δXn−1(i),

where Xn−1(1), . . . , Xn−1(N) are the samples coming from the (n − 1)-th itera-
tion of the Gibbs sampler sampling operator, that is, the samples coming from
SN,m
π̂µn−2

Cn−1Pπ̂
µ
n−2. Recall that the Gibbs sampler samples iteratively from the con-

ditional distributions of the measure it is applied to. While there are many ways
to implement this sampling scheme (for instance, by using rejection-sampling to
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directly sample from the conditional distributions, which are only needed to be
known point-wise), we currently present a sampling procedure that takes place in
multiple stages so to resemble the sampling scheme adopted for ordinary particle
filters (with importance weights, see Chapter 3). This formulation will be functional
to highlight, at least at a heuristic level, the reason why also the Gibbs sampler
particle filter algorithm suffers from the curse of dimensionality, and it will readily
suggest a way around the problem (see Section 5.4 below).

Notice that for any measure ρ on X we have

(CnPρ)(Xv ∈ A|XV \{v} = xV \{v}) =∫
ρ(dz)

∏
w∈V \{v} p

w(z, xw) pv(z, ω)ψv(dω) gv(ω, Y v
n ) 1A(ω)∫

ρ(dz)
∏

w∈V \{v} p
w(z, xw) pv(z, ω)ψv(dω) gv(ω, Y v

n )
.

Hence, we can write

(CnPπ̂
µ
n−1)(Xv ∈ A|XV \{v} = xV \{v})

=

∑N
i=1

∏
w∈V \{v} p

w(Xn−1(i), xw)
∫
pv(Xn−1(i), ω)ψv(dω) gv(ω, Y v

n ) 1A(ω)
∑N

i=1

∏
w∈V \{v} p

w(Xn−1(i), xw)
∫
pv(Xn−1(i), ω)ψv(dω) gv(ω, Y v

n )

=
N∑

i=1

W v
n,x(i) q

v
n(Xn−1(i), A),

where the weights are defined as

W v
n,x(i) :=

Zv
n(Xn−1(i))

∏
w∈V \{v} p

w(Xn−1(i), xw)
∑N

i=1 Z
v
n(Xn−1(i))

∏
w∈V \{v} p

w(Xn−1(i), xw)
,

and qvn is a transition kernel from X to Xv defined as

qvn(z, A) :=

∫
pv(z, ω) gv(ω, Y v

n )ψv(dω) 1A(ω)

Zv
n(z)

,

with

Zv
n(z) :=

∫
pv(z, ω) gv(ω, Y v

n )ψv(dω).

As the weights are positive and
∑N

i=1W
v
n,x(i) = 1 by construction, they can be

interpreted as probabilities. So, sampling from (CnPπ̂
µ
n−1)(Xv ∈ · |XV \{v} = xV \{v})

can be achieved by first sampling J from the distribution j ∈ {1, . . . , N} → W v
n,x(j),

and then sampling from qvn(Xn−1(J), · ) (note that this is a one-dimensional integral,
and one can use one of the methods in [2] to sample from it, such as rejection-
sampling). The resulting algorithm is given in Figure 5.2.2

2Note that the algorithm illustrated in Figure 5.2 differs a little from the one described in the
main text, as for simplicity it is now assumed that π̂µ0 = 1

N

∑N
i=1 δX0(i), for X0(1), . . . , X0(N) ∼ µ

(if π̂µ0 = µ as in the main text, then the weights W v
1,x(j)’s would be different). Moreover, note that

more clever implementations of this algorithm can be considered, but this is beyond the scope of
our current treatment.
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Algorithm 5: Gibbs sampler particle filter

Data: Fix n,m,N ≥ 1. Let the observations Y1, . . . , Yn be given.
Sample i.i.d. X0(i) ∼ µ, i = 1, . . . , N , and let π̂µ0 = 1

N

∑N
i=1 δX0(i);

for s = 1, . . . , n do
Sample i.i.d. R0(i), i = 1, . . . , N , from the distribution π̂µs−1;
for i = 1, . . . , N do

for ` = 1, . . . ,m do
for k = 1, . . . , d do

Let R = (R
v1:vk−1

` (i), r, R
vk+1:vd
`−1 (i)), for any r ∈ Xvk ;

Sample J from the distribution j ∈ {1, . . . , N} → W vk
s,R(j), with

W vk
s,R(j)=

∏
w∈V \{vk}

pw(Xs−1(j),Rw)
∫
pvk (Xs−1(j),ω)ψvk (dω) gvk (ω,Y

vk
s )∑N

j=1

∏
w∈V \{vk}

pw(Xs−1(j),Rw)
∫
pvk (Xs−1(j),ω)ψvk (dω)gvk (ω,Y

vk
s )

;

Sample Rvk
` (i)∼qvks (Xs−1(J), dω)= pvk (Xs−1(J),ω) gvk (ω,Y

vk
s )ψvk (dω)∫

pvk (Xs−1(J),ω) gvk (ω,Y
vk
s )ψvk (dω)

;

Let Xv
s (i) = Rv

m(i), i = 1, . . . , N , v = v1, . . . vd, and π̂µs := 1
N

∑N
i=1 δXs(i);

Compute the approximate filter πµnf ≈ π̂µnf .

Figure 5.2: Gibbs sampler particle filter.

5.4 Sample degeneracy with dimension

Also the Gibbs sampler particle filter runs into the curse of dimensionality. Ultimately,
weight degeneracy occurs for the same reason why it occurs for the SIS algorithm
(Section 3.2) and for the SIR algorithm (Section 3.3). To make this point, let us
recall the definition of the weights (up to normalization factors) involved in these
algorithms:

SIS particle filter −−−−→ Wn(i) ∝
n∏

k=1

∏

v∈V

gv(Xv
k (i), Y v

k ),

SIR particle filter −−−−→ Wn(i) ∝
∏

v∈V

gv(Xv
n(i), Y v

n ),

Gibbs sampler particle filter −−−−→ W v
n,x(i) ∝ Zv

n(Xn−1(i))
∏

w∈V \{v}

pw(Xn−1(i), xw),

(clearly, different algorithms involve different particles). Heuristically it is easy to
see where the problem of weight degeneracy comes from: roughly speaking, weights
get picked towards zero or infinity exponentially fast with the dimension cardV . In
the SIS particle filter the problem appears both with time and space (see Section
3.2.1). In the SIR particle filter the problem is caused by the product of observation
likelihoods (see Section 3.3.3), while in the Gibbs sampler particle filter the problem
is caused by the product of transition likelihoods.

Proceeding in the same line of thoughts, it is easy to see why the block particle
filter (see Section 4.3 for its definition) can overcome the curse of dimensionality.
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Note, in fact, that the weights involved in this algorithm read

Block particle filter −−−−→ WK
k (i) ∝

∏

v∈K

gv(Xv
n(i), Y v

n ),

where the product of observation likelihoods is restricted only to the coordinates in
the block K ⊆ V . Hence, the block particle filter samples at each coordinate v by
using weights that are defined only through coordinates contained in the element K
of the partition K such that v ∈ K. So, even if the dimensionality of the whole
model (cardV ) is increased, what matters for the sake of weight degeneracy is only
the dimensionality of the blocks (cardK).

Following this intuition, a spatially-homogenous procedure to localize the Gibbs
particle filter readily suggests itself. If in this algorithm we replace the measure
(CnPρ)(Xv ∈ A|XV \{v} = xV \{v}) with the following measure

∫
ρ(dz)

∏
w∈Nb(v)\{v} p

w(z, xw) pv(z, ω)ψv(dω) gv(ω, Y v
n ) 1A(ω)∫

ρ(dz)
∏

w∈Nb(v)\{v} p
w(z, xw) pv(z, ω)ψv(dω) gv(ω, Y v

n )
, (5.1)

where the product over w ∈ V is replaced with the product over w ∈ Nb(v) := {v′ ∈
V : d(v, v′) ≤ b}, then the new algorithm—which we call localized Gibbs sampler
particle filter—would yield weights of the following form:

Localized Gibbs sampler particle filter

−−−−→ W v
n,x(i) ∝ Zv

n(Xn−1(i))
∏

w∈Nb(v)\{v}

pw(Xn−1(i), xw).

That is, the new algorithm samples at each coordinate v by using weights that are
defined only through coordinates contained in a ball of radius b centered at v. Thus,
we obtain a spatially homogeneous way of localizing the sampling step, using the
Gibbs sampler as a way of constructing a high-dimensional distribution from its con-
ditional distributions (as discussed in Section 5.1, recall that this localization can not
be described as π̂µn = SNCnMPπ̂µn−1, since the measure MPπ̂µn−1 does not exists). The
resulting algorithm is immediately given as in Figure 5.2 upon truncating the weights
as we just mentioned.

5.5 Localized Gibbs sampler particle filter

We now introduce a more convenient description of the localized Gibbs sampler par-
ticle filter. For each probability measure ρ on X and each n ≥ 1, v ∈ V , define the
probability kernels ηvn,ρ and η̃vn,ρ from X to Xv respectively as:

ηvn,ρ(x,A) :=

∫
ρ(dz)

∏
w∈V \{v} p

w(z, xw) pv(z, ω)ψv(dω) gv(ω, Y v
n ) 1A(ω)∫

ρ(dz)
∏

w∈V \{v} p
w(z, xw) pv(z, ω)ψv(dω) gv(ω, Y v

n )
,

η̃vn,ρ(x,A) :=

∫
ρ(dz)

∏
w∈Nb(v)\{v} p

w(z, xw) pv(z, ω)ψv(dω) gv(ω, Y v
n ) 1A(ω)∫

ρ(dz)
∏

w∈Nb(v)\{v} p
w(z, xw) pv(z, ω)ψv(dω) gv(ω, Y v

n )
.
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It is easy to verify that

ηvn,ρ(x,A) = (CnPρ)(Xv ∈ A|XV \{v} = xV \{v})

= Pρ(Xv
1 ∈ A|Y1 = Yn, X

V \{v}
1 = xV \{v}),

while

η̃vn,ρ(x,A) = Pρ(Xv
1 ∈ A|Y Nb(v)

1 = Y Nb(v)
n , XNb(v)\{v} = xNb(v)\{v})

corresponds to the localized quantity (5.1). Let us also define the probability kernels
Gv
n,ρ and G̃v

n,ρ from X to X respectively as

Gv
n,ρ(x,A) :=

∫
ηvn,ρ(x, dω

v) δxV \{v}(dω
V \{v}) 1A(ω),

G̃v
n,ρ(x,A) :=

∫
η̃vn,ρ(x, dω

v) δxV \{v}(dω
V \{v}) 1A(ω),

and the operators on probability measures

(Gvn,ρµ)f :=

∫
µ(dx)Gv

n,ρ(x, dx
′) f(x′),

(G̃vn,ρµ)f :=

∫
µ(dx) G̃v

n,ρ(x, dx
′) f(x′).

From the definition of the Gibbs sampler sampling operator (Definition 5.1) we can
write

SN,mρ CnPρ = SNρ(Gv1
n,ρ · · ·Gvd

n,ρ)
m ≡ SN(Gvdn,ρ · · ·Gv1

n,ρ)
mρ.

Therefore, the Gibbs sampler particle filter can be formulated as

π̂µ0 := µ, π̂µn = SN(Gvd
n,π̂µn−1

· · ·Gv1

n,π̂µn−1
)m π̂µn−1.

At this point it is straightforward to describe the localization procedure previously
discussed and to define the localized Gibbs sampler particle filter as

π̂µ0 := µ, π̂µn := SN(G̃vd
n,π̂µn−1

· · · G̃v1

n,π̂µn−1
)m π̂µn−1.

In the special case b = maxv,v′∈V d(v, v′) the localized Gibbs sampler particle filter
reduces to the Gibbs sampler particle filter, so that the former is a strict generalization
of the latter (we have therefore not introduced a separate notation for the localized
Gibbs sampler particle filter: in the remaining of this chapter, the notation π̂µn always
refers to the localized Gibbs sampler particle filter).

Before moving to the analysis of the localized Gibbs sampler particle filter in
the next section, we now prove that under the mixing conditions ε ≤ pv ≤ ε−1 for
0 < ε < 1 the Gibbs sampler particle filter recursion π̂µn = SN,m

π̂µn−1
CnPπ̂

µ
n−1 converges

in the limit of infinitely many sweeps (m → ∞) to the “optimal” SIR particle filter
recursion π̂µn = SNCnPπ̂

µ
n−1 (cf. Remark 3.13). Recall that Fn := CnP.
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Lemma 5.3 (Convergence of Gibbs sampler particle filter). Suppose there exists
0 < ε < 1 such that

ε ≤ pv(x, zv) ≤ ε−1, ∀ v ∈ V, x, z ∈ X.

Then, for each probability measures ρ, µ on X and each n ≥ 1 we have

lim
`→∞
‖Fnρ− µ(Gv1

n,ρ · · ·Gvd
n,ρ)

`‖ = 0.

Proof. From the local mixing conditions for each pv we get the following minorization
condition for each ηvn,ρ,

ηvn,ρ(x,A) ≥ ε2(d−1)χvn(A),

where

χvn(A) :=

∫
ρ(dz) pv(z, ω)ψv(dω) gv(ω, Y v

n ) 1A(ω)∫
ρ(dz) pv(z, ω)ψv(dω) gv(ω, Y v

n )
.

Hence, we also get the following minorization condition for an entire sweep of the
Gibbs sampler,

(Gv1
n,ρ · · ·Gvd

n,ρ)(x,A) ≥ ε2d(d−1)χ(A),

where χ(A) :=
∫ ⊗

v∈V χ
v
n(dzv) 1A(z). As by construction for each v ∈ V the kernel

Gv
n,ρ leaves invariant the measure Fnρ, that is,

(Fnρ)Gv
n,ρ = Fnρ,

then by Lemma 2.10 we have

‖Fnρ− µ(Gv1
n,ρ · · ·Gvd

n,ρ)
`‖ = ‖(Fnρ)(Gv1

n,ρ · · ·Gvd
n,ρ)

` − µ(Gv1
n,ρ · · ·Gvd

n,ρ)
`‖

≤ (1− ε2d(d−1))`‖Fnρ− µ‖.

5.6 Main result: spatially-homogeneous error

bound

Ultimately, we would like to mimic the result of Theorem 4.2 for the localized Gibbs
sampler particle filter, and to prove a bound for |||πµn − π̂µn|||J that is uniform both in
time (n) and in the model dimension (cardV ), and that is spatially-homogeneous in
J ⊆ V . Although at the time being we do not have such a result, Theorem 5.4 below
represents an encouraging first step towards establishing it.

Following the strategy pursued in Chapter 4, we define the approximate Gibbs
sampler filter as

π̃µ0 := µ, π̃µn := F̃n π̃
µ
n−1 ≡ (G̃vd

n,π̃µn−1
· · · G̃v1

n,π̃µn−1
)m π̃µn−1,
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and we consider the following error decomposition (cf. Section 4.5.1)

|||πµn − π̂µn|||J ≤ |||πµn − π̃µn|||J︸ ︷︷ ︸
bias

+ |||π̃µn − π̂µn|||J︸ ︷︷ ︸
variance

.

Recall the following definitions from Chapter 4 and Appendix A. For any proba-
bility measure µ on X and x, z ∈ X, v, v′ ∈ V , β > 0, let

∆ := max
v∈V

card{v′ ∈ V : d(v, v′) ≤ r},

µvx(dz
v) := µ(dzv|xV \{v}),

µvx,z(A) :=

∫
1A(xv)

∏
w∈N(v) p

w(x, zw)µvx(dx
v)∫ ∏

w∈N(v) p
w(x, zw)µvx(dx

v)
,

Cµ
vv′ :=

1

2
sup
z∈X

sup
x,x̃∈X:xV \{v′}=x̃V \{v′}

‖µvx,z − µvx̃,z‖,

Corr(µ, β) := max
v∈V

∑

v′∈V

eβd(v,v′)Cµ
vv′ .

The following result provides a spatially homogeneous one-step error bound for
the bias term of the localized Gibbs sampler particle filter.

Theorem 5.4 (Localized Gibbs sampler particle filter, one-step error for the bias).
There exists a constant 0 < ε0 < 1 depending only on the local quantity ∆ such that
the following holds.

Suppose there exists ε0 < ε < 1 such that

ε ≤ pv(x, zv) ≤ ε−1 for all v ∈ V, x, z ∈ X,

and let ρ be a probability measure on X such that

Corr(ρ, β) ≤ 1

4
,

where β = 1
r+1

log 1
8∆(1−ε2)

. Then, for each n ≥ 1 and J ⊆ V we have

‖Fnρ− F̃nρ‖J ≤ α card J e−γmin{b,m}.

where the constants 0 < α, γ <∞ depend only on ε, r, and ∆.

We refer to Appendix B for the proof of Theorem 5.4. While in the case of the
block particle filter the key insight to perform the analysis is that both filter and
approximate block filter can be thought of as Gibbs measures on properly-defined
graphs (see Section 4.5.2 and Remark 4.9), in the present case the key insight is that
both filter and approximate Gibbs sampler filter can be thought of as Gibbs samplers.

In fact, as by construction for each v ∈ V the kernel Gv
n,ρ leaves the measure Fnρ

invariant (that is, (Fnρ)Gv
n,ρ = Fnρ), then we can express the filter recursion as m

sweeps of a Gibbs sampler, namely,

Fnρ = (Fnρ)(Gv1
n,ρ · · ·Gvd

n,ρ)
m.
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On the other hand, the approximate Gibbs sampler filter recursion is defined as

F̃nρ := ρ (G̃v1
n,ρ · · · G̃vd

n,ρ)
m.

The key idea to bound ‖Fnρ−F̃nρ‖J is then to use the one-sided Dobrushin comparison
theorem (Theorem 2.12) to capture the one-sidedness that is embedded in the Gibbs
samplers Fnρ and F̃nρ.

Remark 5.5 (On running the algorithm). The one-step error bound in Theorem 5.4
suggests that in practice we only need to run the localized Gibbs sampler particle filter
for a number of sweeps (m) that is of the same order as the radius (b) at which we
implement the localization. From the analysis of the block particle filter (see Section
4.4) we know that the optimal b increases quite slowly with the number of particles
N (b ∼ log1/qN for the square lattice V = {−d, . . . , d}q), which suggests that each
iteration of the algorithm does not need to be run for many sweeps.

5.7 Where things stand

Theorem 5.4 yields a bound on the one-step error ‖Fnρ − F̃nρ‖J under a certain
assumption on the decay of correlations for the measure ρ. In order to use this result
within the general error decomposition scheme pursued in Section 4.5.3 to bound the
bias term |||πµn − π̃µn|||J , we need to prove that the appropriate decay of correlations
property does in fact hold, uniformly in time, for the approximate filter π̃µn. That is,
we would like to prove that

sup
n≥0

Corr(π̃µn, β) ≤ c < 1,

where c is an absolute constant which does not depend on the ambient dimension.
In the case of the block particle filter we can show this property by iterating a

one-step decay of correlations bound that is obtained using the Dobrushin comparison
theorem (see Section A.3). In the case of the localized Gibbs sampler particle filter,
however, the situation is more involved as we need to control the way the decay of
correlations is propagated in each iteration of the Gibbs samplers. While we have
strong reasons to believe that the decay of correlations of the approximate filter
should hold uniformly in time, at the time being we have been not successful in
establishing the required behavior using the Dobrushin comparison method, and new
mathematical tools seem to be needed.

To see why we expect the decay of correlations property to hold, consider the
case of the filter recursion. While the Dobrushin comparison theorem can be used to
bound the quantity Corr(Fnρ, β) by making an assumption on Corr(ρ, β) (as done in
Section A.3, see Proposition A.9 in particular), it seems not possible to use the same
machinery to bound Corr(ρ(Gv1

n,ρ · · ·Gvd
n,ρ)

`, β), for any given finite `, without making
higher-order assumptions on the decay of correlations of ρ, although we know that
lim`→∞ ρ(Gv1

n,ρ · · ·Gvd
n,ρ)

` = Fnρ as seen in Lemma 5.3.
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The approach that we have presented to bound the bias of the localized Gibbs
sampler particle filter is taken from the analysis of the block particle filter given
in Chapter 4, and it is based on the recursive property of the filter. On the other
hand, the improved analysis of the block particle filter that will be given in the
next chapter (Section 6.4) is based on another strategy that allows to directly use
the Dobrushin comparison theorem on properly-defined space-time Gibbs measures,
without considering the filter recursion. This new method yields a shorter proof for
the bound of the bias term that does not involve controlling the decay of correlations
quantity Corr(π̃µn, β). This approach relies on the ability to express both filter and
approximate filter as the marginal of properly-defined Markov random fields, where
the natural interaction range of the system (recall that the models introduced in
Section 4.1 have an interaction of range r) can be recovered through the interaction
neighborhood of the field (cf. the discussion on the Dobrushin comparison method in
Section 4.5.2).

The problem in implementing this approach in the case of the localized Gibbs
sampler particle filter lies in the fact that this algorithm is defined in terms of a
recursion that does not seem to admit an intrinsic probabilistic interpretation that
can allow to recover the natural interaction range of the model. Ultimately, the
problem is that this algorithm is defined in terms of conditional probabilities that do
not have a local structure (see Section 5.5). In fact, by definition, η̃vn,ρ(x,A) depends
on xw whenever d(v, w) ≤ b. Therefore, even if we can interpret the measure π̃µn as the
marginal of a properly-defined space-time Gibbs measure, this measure is a Markov
random field with interaction neighborhood size b, which does not correspond to the
intrinsic neighborhood size r.
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Chapter 6

Comparison theorems for Gibbs
measures

This chapter is devoted to establishing new comparison theorems for Gibbs mea-
sures that substantially extend the range of applicability of the classical Dobrushin
comparison theorem, the main tool behind the proofs of the results presented in the
previous two chapters for the analysis of filtering algorithms in high dimension. The
novel toolbox will be used to extend the analysis of the block particle filter given in
Chapter 4 to the case where spatial and temporal ergodicity are treated on a different
footing. This chapter is based on the paper [41].

6.1 Motivations

The analysis of the block particle filter in Chapter 4 and the analysis of the localized
Gibbs sampler particle filter in Chapter 5 rely heavily on the Dobrushin comparison
theorem introduced in Section 2.4, which is a powerful tool to obtain dimension-
free estimates on the difference between the marginals of Gibbs measures ρ and ρ̃
in terms of the single site conditional distributions ρ(Xj ∈ dxj|XI\{j} = xI\{j}) and
ρ̃(Xj ∈ dxj|XI\{j} = xI\{j}).

In order to ensure decay of correlations, Theorem 4.2 and Theorem 5.4 (the main
results of Chapter 4 and Chapter 5, respectively) impose a weak interactions assump-
tion (ε ≤ pv ≤ ε−1 for ε > ε0) that is dictated by the comparison theorem. As
explained in Section 4.4.2, this assumption is unsatisfactory already at the qualita-
tive level: it limits not only the spatial interactions (as is needed to ensure decay of
correlations) but also the dynamics in time. Overcoming this unnatural restriction
requires a generalized version of the comparison theorem, which is one of the main
motivation for the results developed in this chapter.

More generally, aside from the filtering framework considered in the previous chap-
ters, the Dobrushin comparison theorem has proved to be useful to establish numer-
ous properties of Gibbs measures, including uniqueness, decay of correlations, global
Markov properties, and analyticity [27, 45, 25], as well as functional inequalities and
concentration of measure properties [29, 32, 67].
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Despite this broad array of applications, the range of applicability of the Do-
brushin comparison theorem proves to be somewhat limited. This can already be
seen in the easiest qualitative consequence of this result: the comparison theorem
implies uniqueness of the Gibbs measure under the well-known Dobrushin unique-
ness criterion [18]. Unfortunately, this criterion is restrictive: even in models where
uniqueness can be established by explicit computation, the Dobrushin uniqueness cri-
terion holds only in a small subset of the natural parameter space (see, e.g., [64] for
examples). This suggests that the Dobrushin comparison theorem is a rather blunt
tool. On the other hand, it is also known that the Dobrushin uniqueness criterion can
be substantially improved: this was accomplished in Dobrushin and Shlosman [17]
by considering a local description in terms of larger blocks ρ(XJ ∈ dxJ |XI\J = xI\J)
instead of the single site specification ρ(Xj ∈ dxj|XI\{j} = xI\{j}). In this manner,
it is possible in many cases to capture a large part of or even the entire uniqueness
region. The uniqueness results of Dobrushin and Shlosman were further generalized
by Weitz [64], who developed remarkably general combinatorial criteria for unique-
ness. However, while the proofs of Dobrushin-Shlosman and Weitz also provide some
information on decay of correlations, they do not provide an analogue of the powerful
general-purpose machinery that the Dobrushin comparison theorem yields in its more
restrictive setting.

The general aim of the present chapter is to fill this gap. Our main results (Theo-
rem 6.4 and Theorem 6.12) provide a direct generalization of the Dobrushin compari-
son theorem to the much more general setting considered by Weitz [64], substantially
extending the range of applicability of the classical comparison theorem.

While the original comparison theorem is an immediate consequence of our main
result (Corollary 6.6), the classical proof that is based on the “method of estimates”
does not appear to extend easily beyond the single site setting. We therefore develop
a different, though certainly related, method of proof that systematically exploits the
connection of Markov chains. In particular, our main results are derived from a more
general comparison theorem for Markov chains that is applied to a suitably defined
family of Gibbs samplers. The proofs of the new comparison theorems are contained
in Appendix C, Sections C.1-C.5.

As an application of the generalized comparison theorems, in Section 6.4 we
present an improved analysis of the block particle filter introduced in Chapter 4.
The proof of this result is provided in Appendix C, Section C.6.

6.2 Setting and notation

We begin by introducing the basic setting that will be used throughout this section.

Sites and configurations

Let I be a finite or countably infinite set of sites. Each subset J ⊆ I is called a region;
the set of finite regions will be denoted as

I := {J ⊆ I : card J <∞}.
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To each site i ∈ I is associated a measurable space Si, the local state space. A
configuration is an assignment xi ∈ Si to each site i ∈ I. The set of all configurations
S, and the set SJ of configurations in a given region J ⊆ I, are defined as

S :=
∏

i∈I

Si, SJ :=
∏

i∈J

Si.

For x = (xi)i∈I ∈ S, we denote by xJ := (xi)i∈J ∈ SJ the natural projection on SJ .
When J ∩K = ∅, we define z = xJyK ∈ SJ∪K such that zJ = xJ and zK = yK .

Local functions

A function f : S→ R̄ is said to be J-local if f(x) = f(z) whenever xJ = zJ , that is,
if f(x) depends on xJ only. The function f is said to be local if it is J-local for some
finite region J ∈ I. When I is a finite set, every function is local. When I is infinite,
however, we will frequently restrict attention to local functions. More generally, we
will consider a class of “nearly” local functions to be defined presently.

Given any function f : S → R̄, let us define for J ∈ I and x ∈ S the J-local
function

fJx (z) := f(zJxI\J).

Then f is called quasilocal if it can be approximated pointwise by the local functions
fJx :

lim
J∈I
|fJx (z)− f(z)| = 0 for all x, z ∈ S,

where limJ∈I aJ denotes the limit of the net (aJ)J∈I where I is directed by inclusion
⊆ (equivalently, aJ → 0 if and only if aJi → 0 for every sequence J1, J2, . . . ∈ I such
that J1 ⊆ J2 ⊆ · · · and

⋃
i Ji = I). Let us note that this notion is slightly weaker

than the conventional notion of quasilocality used, for example, in [27].

Metrics

In the sequel, we fix for each i ∈ I a metric ηi on Si (we assume throughout that ηi
is measurable as a function on Si × Si). We will write ‖ηi‖ = supx,z ηi(x, z).

Given a function f : S→ R̄ and i ∈ I, we define

oscif := sup
x,z∈S:xI\{i}=zI\{i}

|f(x)− f(z)|
ηi(xi, zi)

.

The quantity oscif measures the variability of f(x) with respect to the variable xi.

Matrices

The calculus of possibly infinite nonnegative matrices will appear repeatedly in the
sequel. Given matrices A = (Aij)i,j∈I and B = (Bij)i,j∈I with nonnegative entries
Aij ≥ 0 and Bij ≥ 0, the matrix product is defined as usual by

(AB)ij =
∑

k∈I

AikBkj.
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This quantity is well defined as the terms in the sum are all nonnegative, but (AB)ij
may possibly take the value +∞. As long as we consider only nonnegative matrices,
all the usual rules of matrix multiplication extend to infinite matrices provided that
we allow entries with the value +∞ and that we use the convention +∞ · 0 = 0
(this follows from the Fubini-Tonelli theorem, cf. [20, Chapter 4]). In particular, the
matrix powers Ak, k ≥ 1 are well defined, and we define A0 = I where I := (1i=j)i,j∈I
denotes the identity matrix. We will write A < ∞ if the nonnegative matrix A
satisfies Aij <∞ for every i, j ∈ I.

Kernels, covers, local structure

Recall that a transition kernel γ from a measurable space (Ω,F) to a measurable
space (Ω′,F′) is a map γ : Ω×F′ → R̄ such that ω 7→ γω(A) is a measurable function
for each A ∈ F′ and γω(·) is a probability measure for each ω ∈ Ω, cf. [31]. Given a
probability measure µ on Ω and function f on Ω′, we define as usual the probability
measure (µγ)(A) =

∫
µ(dω)γω(A) on Ω′ and function (γf)(ω) =

∫
γω(dω′)f(ω′) on Ω.

A transition kernel γ between product spaces is called quasilocal if γf is quasilocal
for every bounded and measurable quasilocal function f .

Our interest throughout this chapter is in models of random configurations, de-
scribed by a probability measure µ on S. We would like to understand the prop-
erties of such models based on their local structure. A natural way to express the
local structure in a finite region J ∈ I is to consider the conditional distribution
γJx (dzJ) = µ(XJ ∈ dzJ |XI\J = xI\J) of the configuration in J given a fixed config-
uration xI\J for the sites outside J : conceptually, γJ describes how the sites in J
“interact” with the sites outside J . The conditional distribution γJ is a transition
kernel from S to SJ . To obtain a complete local description of the model, we must
consider a class of finite regions J that covers the entire set of sites I. Let us call a
collection of regions J ⊆ I a cover of I if every site i ∈ I is contained in at least one
element of J (note that, by definition, a cover contains only finite regions). Given any
cover J, the collection (γJ)J∈J provides a local description of the model.

In fact, our main results will hold in a somewhat more general setting than is
described above. Let µ be a probability measure on S and γJ be transition kernel
from S to SJ . We say that µ is γJ-invariant if for every bounded measurable function
f ∫

µ(dx) f(x) =

∫
µ(dx) γJx (dzJ) f(zJxI\J);

by a slight abuse of notation, we will also write µf = µγJfJ . This means that if
the configuration x is drawn according to µ, then its distribution is left unchanged
if we replace the configuration xJ inside the region J by a random sample from the
distribution γJx , keeping the configuration xI\J outside J fixed. Our main results
will be formulated in terms of a collection of transition kernels (γJ)J∈J such that
J is a cover of I and such that µ is γJ -invariant for every J ∈ J. If we choose
γJx (dzJ) = µ(XJ ∈ dzJ |XI\J = xI\J) as above, then the γJ -invariance of µ holds
by construction [31, Theorem 6.4]; however, any family of γJ -invariant kernels will
suffice for the validity of our main results.
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Remark 6.1 (Gibbs measures and specifications). The idea that the collection (γJ)J∈J
provides a natural description of high-dimensional probability distributions is prevalent
in many applications. In fact, in statistical mechanics, the model is usually defined
in terms of such a family. To this end, one fixes a priori a family of transition
kernels (γJ)J∈I, called a specification, that describes the local structure of the model.
The definition of γJ is done directly in terms of the parameters of the problem (the
potentials that define the physical interactions, or the local constraints that define the
combinatorial structure). A measure µ on S is called a Gibbs measure for the given
specification if µ(XJ ∈ dzJ |XI\J = xI\J) = γJx (dzJ) for every J ∈ I. The existence
of a Gibbs measure allows to define the model µ in terms of the specification. It
may happen that there are multiple Gibbs measures for the same specification: the
significance of this phenomenon is the presence of a phase transition, akin to the
transition of water from liquid to solid at the freezing point. As the construction of
Gibbs measures from specifications is not essential for the validity or applicability of
our results, we omit further details. We refer to [27, 45, 64] for extensive discussion,
examples, and references.

6.3 General comparison theorem

Let ρ and ρ̃ be probability measures on the space of configurations S. Our main
result, Theorem 6.4 below, provides a powerful tool to obtain quantitative bounds on
the difference between ρ and ρ̃ in terms of their local structure. Before we can state
our results, we must first introduce some basic notions. Our terminology is inspired
by Weitz [64].

As was explained above, the local description of a probability measure ρ on S will
be provided in terms of a family of transition kernels. We formalize this as follows.

Definition 6.2. A local update rule for ρ is a collection (γJ)J∈J where J is a cover
of I, γJ is a transition kernel from S to SJ and ρ is γJ-invariant for every J ∈ J.

In order to compare two measures ρ and ρ̃ on the basis of their local update
rules (γJ)J∈J and (γ̃J)J∈J, we must quantify two separate effects. On the one hand,
we must understand how the two models differ locally: that is, we must quantify
how γJx and γ̃Jx differ when acting on the same configuration x. On the other hand,
we must understand how perturbations to the local update rule in different regions
interact: to this end, we will quantify the extent to which γJx and γJz differ for different
configurations x, z. Both effects will be addressed by introducing a suitable family of
couplings. Recall that a probability measure Q on a product space Ω× Ω is called a
coupling of probability measures µ, ν on Ω if its marginals coincide with µ, ν, that is,
Q( · × Ω) = µ and Q(Ω× · ) = ν.

Definition 6.3. A coupled update rule for (ρ, ρ̃) is a collection (γJ , γ̃J , QJ , Q̂J)J∈J,
where J is a cover of I, such that the following properties hold:

1. (γJ)J∈J and (γ̃J)J∈J are local update rules for ρ and ρ̃, respectively.
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2. QJ
x,z is a coupling of γJx , γ

J
z for every J ∈ J and x, z ∈ S with card{i : xi 6=

zi} = 1.

3. Q̂J
x is a coupling of γJx , γ̃

J
x for every J ∈ J and x ∈ S.

We can now state our main result. The proof will be given in Appendix C, Sections
C.1–C.3.

Theorem 6.4 (General comparison theorem, main result). Let J be a cover of I,
let (wJ)J∈J be a family of strictly positive weights, and let (γJ , γ̃J , QJ , Q̂J)J∈J be a
coupled update rule for (ρ, ρ̃). Define for i, j ∈ I

Wij := 1i=j
∑

J∈J:i∈J

wJ ,

Rij := sup
x,z∈S:

xI\{j}=zI\{j}

1

ηj(xj, zj)

∑

J∈J:i∈J

wJ Q
J
x,zηi,

aj :=
∑

J∈J:j∈J

wJ

∫ ∗
ρ̃(dx) Q̂J

xηj.

Assume that γJ is quasilocal for every J ∈ J, and that

Wii ≤ 1 and lim
n→∞

∑

j∈I

(I −W +R)nij (ρ⊗ ρ̃)ηj = 0 for all i ∈ I. (6.1)

Then we have

|ρf − ρ̃f | ≤
∑

i,j∈I

oscif DijW
−1
jj aj where D :=

∞∑

n=0

(W−1R)n,

for any bounded and measurable quasilocal function f such that oscif < ∞ for all
i ∈ I.

Remark 6.5. While it is essential in the proof that γJ and γ̃J are transition kernels,
we do not require that QJ and Q̂J are transition kernels in Definition 6.3, that is,
the couplings QJ

x,z and Q̂J
x need not be measurable as functions of x, z. It is for this

reason that the coefficients aj are defined in terms of an outer integral rather than an
ordinary integral [53]:

∫ ∗
f(x) ρ(dx) := inf

{∫
g(x) ρ(dx) : f ≤ g, g is measurable

}
.

When x 7→ Q̂J
xηj is measurable this issue can be disregarded. In practice measura-

bility will hold in all but pathological cases, but may not always be trivial to prove.
We therefore allow for nonmeasurable couplings for sake of technical convenience, so
that it is not necessary to check measurability of the coupled updates when applying
Theorem 6.4.

We will presently formulate a number of special cases and extensions of Theorem
6.4 that may be useful in different settings. A detailed application is presented in
Section 6.4, where we improve the analysis of the block particle filter given in Chapter
4.
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6.3.1 The classical comparison theorem

The original comparison theorem of Dobrushin [18, Theorem 3] and its commonly
used formulation due to Föllmer [24] (i.e., Theorem 2.11) correspond to the special
case of Theorem 6.4 where the cover J = Js := {{i} : i ∈ I} consists of single sites.
For example, the main result of [24] follows readily from Theorem 6.4 under a mild
regularity assumption. To formulate it, recall that the Wasserstein distance dη(µ, ν)
between probability measures µ and ν on a measurable space Ω with respect to a
measurable metric η is defined as

dη(µ, ν) := inf
Q(·×Ω)=µ
Q(Ω×·)=ν

Qη,

where the infimum is taken over probability measures Q on Ω × Ω with the given
marginals µ and ν. We now obtain the following classical result (cf. [24] and [25,
Remark 2.17]).

Corollary 6.6 ([24]). Assume Si is Polish and ηi is lower-semicontinuous for all
i ∈ I. Let (γ{i})i∈I and (γ̃{i})i∈I be local update rules for ρ and ρ̃, respectively, and let

Cij := sup
x,z∈S:

xI\{j}=zI\{j}

dηi(γ
{i}
x , γ

{i}
z )

ηj(xj, zj)
, bj :=

∫ ∗
ρ̃(dx) dηj(γ

{j}
x , γ̃{j}x ).

Assume that γ{i} is quasilocal for every i ∈ I, and that

lim
n→∞

∑

j∈I

Cn
ij(ρ⊗ ρ̃)ηj = 0 for all i ∈ I.

Then we have

|ρf − ρ̃f | ≤
∑

i,j∈I

oscif Dij bj where D :=
∞∑

n=0

Cn,

for any bounded and measurable quasilocal function f such that oscif < ∞ for all
i ∈ I.

If Q
{i}
x,z and Q̂

{i}
x are minimizers in the definition of dηi(γ

{i}
x , γ

{i}
z ) and dηi(γ

{i}
x , γ̃

{i}
x ),

respectively, and if we let J = Js and w{i} = 1 for all i ∈ I, then Corollary 6.6 follows
immediately from Theorem 6.4. For simplicity, we have imposed the mild topological
regularity assumption on Si and ηi to ensure the existence of minimizers [62, Theorem
4.1] (when minimizers do not exist, it is possible with some more work to obtain a
similar result by using near-optimal couplings in Theorem 6.4). Let us note that
when ηi(x, z) = 1x 6=z is the trivial metric, the Wasserstein distance reduces to the
total variation distance

dη(µ, ν) =
1

2
‖µ− ν‖ :=

1

2
sup

f :‖f‖≤1

|µf − νf | when η(x, z) = 1x6=z,
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and an optimal coupling exists in any measurable space [18, p. 472]. Thus in this
case no regularity assumptions are needed, and Corollary 6.6 reduces to the textbook
version of the comparison theorem that appears, e.g., in [27, Theorem 8.20] or [45,
Theorem V.2.2].

While the classical comparison theorem of Corollary 6.6 follows from our main
result, it should be emphasized that the single site assumption J = Js is a significant
restriction. The general statement of Theorem 6.4 constitutes a crucial improvement
that substantially extends the range of applicability of the comparison method, as
the application to the block particle filter demonstrates. Let us also note that the
proofs in [18, 24], based on the “method of estimates,” do not appear to extend easily
beyond the single site setting. We use a different (though related) method of proof
that systematically exploits the connection with Markov chains (Appendix C).

6.3.2 Alternative assumptions

The key assumption of Theorem 6.4 is (6.1). The aim of the present section is to
obtain a number of useful alternatives to assumption (6.1) that are easily verified in
practice.

We begin by defining the notion of a tempered measure [25, Remark 2.17].

Definition 6.7. A probability measure µ on S is called x?-tempered if

sup
i∈I

∫
µ(dx) ηi(xi, x

?
i ) <∞.

In the sequel x? ∈ S will be considered fixed and µ will be called tempered.

It is often the case in practice that the collection of metrics is uniformly bounded,
that is, supi ‖ηi‖ < ∞. In this case, every probability measure on S is trivially
tempered. However, the restriction to tempered measures may be essential when
the spaces Si are noncompact (see, for example, [18, section 5] for a simple but
illuminating example).

Let us recall that a norm ‖ · ‖ defined on an algebra of square (possibly infinite)
matrices is called a matrix norm if ‖AB‖ ≤ ‖A‖ ‖B‖. We also recall that the matrix
norms ‖ · ‖∞ and ‖ · ‖1 are defined for nonnegative matrices A = (Aij)i,j∈I as

‖A‖∞ := sup
i∈I

∑

j∈I

Aij, ‖A‖1 := sup
j∈I

∑

i∈I

Aij.

The following result collects various useful alternatives to (6.1). It is proved in Section
C.4 in Appendix C.

Corollary 6.8 (Alternatives to assumption (6.1)). Suppose that ρ and ρ̃ are tem-
pered. Then the conclusion of Theorem 6.4 remains valid when the assumption (6.1)
is replaced by one of the following:

1. card I <∞ and D <∞.
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2. card I < ∞, R < ∞, and ‖(W−1R)n‖ < 1 for some matrix norm ‖ · ‖ and
n ≥ 1.

3. supiWii <∞ and ‖W−1R‖∞ < 1.

4. supiWii <∞, ‖RW−1‖∞ <∞, and ‖(RW−1)n‖∞ < 1 for some n ≥ 1.

5. supiWii <∞,
∑

i ‖ηi‖ <∞, and ‖RW−1‖1 < 1.

6. supiWii <∞, there exists a metric m on I such that sup{m(i, j) : Rij > 0} <
∞ and supi

∑
j e
−βm(i,j) <∞ for all β > 0, and ‖RW−1‖1 < 1.

The conditions of Corollary 6.8 are closely related to the uniqueness problem for
Gibbs measures. Suppose that the collection of quasilocal transition kernels (γJ)J∈J
is a local update rule for ρ. It is natural to ask whether ρ is the unique measure that
admits (γJ)J∈J as a local update rule (see the remark at the end of Section 6.2). We
now observe that uniqueness is a necessary condition for the conclusion of Theorem
6.4. Indeed, let ρ̃ be another measure that admits the same local update rule. If (6.1)
holds, we can apply Theorem 6.4 with γ̃J = γJ and aj = 0 to conclude that ρ̃ = ρ.
In particular,

∑
j(I −W + R)nij → 0 in Theorem 6.4 evidently implies uniqueness in

the class of tempered measures.
Of course, the point of Theorem 6.4 is that it provides a quantitative tool that

goes far beyond qualitative uniqueness questions. It is therefore interesting to note
that this single result nonetheless captures many of the uniqueness conditions that
are used in the literature. In Corollary 6.8, Condition 3 is precisely the “influence
on a site” condition of Weitz [64, Theorem 2.5] (our setting is even more general in
that we do not require bounded-range interactions as is essential in [64]). Conditions
5 and 6 constitute a slight strengthening (see below) of the “influence of a site”
condition of Weitz [64, Theorem 2.7] under summable metric or subexponential graph
assumptions, in the spirit of the classical uniqueness condition of Dobrushin and
Shlosman [17]. In the finite setting with single site updates, Condition 2 is in the
spirit of [22] and Condition 4 is in the spirit of [21].

On the other hand, we can now see that Theorem 6.4 provides a crucial improve-
ment over the classical comparison theorem. The single site setting of Corollary 6.6
corresponds essentially to the original Dobrushin uniqueness regime [18]. It is well
known that this setting is restrictive, in that it captures only a small part of the
parameter space where uniqueness of Gibbs measures holds. It is precisely for this
reason that Dobrushin and Shlosman introduced their improved uniqueness criterion
in terms of larger blocks [17], which in many cases allows to capture a large part of
or even the entire uniqueness region; see [64, section 5] for examples. The generalized
comparison Theorem 6.4 in terms of larger blocks can therefore be fruitfully applied
to a much larger and more natural class of models than the classical comparison the-
orem. This point is further emphasized in the context of the application to the block
particle filter in Section 6.4.

Remark 6.9. The “influence of a site” condition ‖RW−1‖1 < 1 that appears in
Corollary 6.8 is slightly stronger than the corresponding condition of Dobrushin-
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Shlosman [17] and Weitz [64, Theorem 2.7]. Writing out the definition of R, we
find that our condition reads

‖RW−1‖1 = sup
j∈I

W−1
jj

∑

i∈I

sup
x,z∈S:

xI\{j}=zI\{j}

1

ηj(xj, zj)

∑

J∈J:i∈J

wJ Q
J
x,zηi < 1,

while the condition of [64, Theorem 2.7] (which extends the condition of [17]) reads

sup
j∈I

W−1
jj sup

x,z∈S:
xI\{j}=zI\{j}

1

ηj(xj, zj)

∑

i∈I

∑

J∈J:i∈J

wJ Q
J
x,zηi < 1.

The latter is slightly weaker as the sum over sites i appears inside the supremum
over configurations x, z. While the distinction between these conditions is inessential
in many applications, there do exist situations in which the weaker condition yields
an essential improvement, see, e.g., [64, section 5.3]. In such problems, Theorem
6.4 is not only limited by the stronger uniqueness condition but could also lead to
poor quantitative bounds, as the comparison bound is itself expressed in terms of the
uniform influence coefficients Rij.

It could therefore be of interest to develop comparison theorems that are able to
exploit the finer structure that is present in the weaker uniqueness condition. In
fact, the proof of Theorem 6.4 already indicates a natural approach to such improved
bounds. However, the resulting comparison theorems are necessarily nonlinear in that
the action of the matrix R is replaced by a nonlinear operator R. The nonlinear
expressions are somewhat difficult to handle in practice, and as we do not at present
have a compelling application for such bounds we do not pursue this direction here.
However, for completeness, we will briefly sketch at the end of Section C.2 how such
bounds can be obtained.

6.3.3 A one-sided comparison theorem

As was discussed in Section 6.2, it is natural in many applications to describe high-
dimensional probability distributions in terms of local conditional probabilities of the
form µ(XJ ∈ dzJ |XI\J = xI\J). This is in essence a static picture, where we describe
the behavior of each local region J given that the configuration of the remaining sites
I\J is frozen. In models that possess dynamics, this description is not very natural.
In this setting, each site i ∈ I occurs at a given time τ(i), and its state is only
determined by the configuration of sites j ∈ I in the past and present τ(j) ≤ τ(i),
but not by the future. For example, the model might be defined as a high-dimensional
Markov chain whose description is naturally given in terms of one-sided conditional
probabilities (see, e.g., [23]). It is therefore interesting to note that the original
comparison theorem of Dobrushin [18] is actually more general than Corollary 6.6
in that it is applicable both in the static and dynamic settings (see the one-sided
Dobrushin comparison theorem, Theorem 2.12). We presently develop an analogous
generalization to Theorem 6.4.
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For the purposes of this section, we assume that we are given a function τ : I → Z
that assigns to each site i ∈ I an integer index τ(i). We define

I≤k := {i ∈ I : τ(i) ≤ k}, S≤k := SI≤k ,

and for any probability measure ρ on S we denote by ρ≤k the marginal distribution
on S≤k.

Definition 6.10. A one-sided local update rule for ρ is a collection (γJ)J∈J where

1. J is a cover of I such that mini∈J τ(i) = maxi∈J τ(i) =: τ(J) for every J ∈ J.

2. γJ is a transition kernel from S≤τ(J) to SJ .

3. ρ≤τ(J) is γJ-invariant for every J ∈ J.

The canonical example of a one-sided local update rule is to consider the one-sided
conditional distributions γJx (dzJ) = ρ(XJ ∈ dzJ |XI≤τ(J)\J = xI≤τ(J)\J). This situation
is particularly useful in the investigation of interacting Markov chains, cf. [18, 23],
where τ(j) denotes the time index of the site j and we condition only on the past
and present, but not on the future.

Definition 6.11. A one-sided coupled update rule for (ρ, ρ̃) is a collection of tran-
sition kernels (γJ , γ̃J , QJ , Q̂J)J∈J such that the following hold:

1. (γJ)J∈J and (γ̃J)J∈J are one-sided local update rules for ρ and ρ̃, respectively.

2. QJ
x,z is a coupling of γJx , γ

J
z for J ∈ J and x, z ∈ S≤τ(J) with card{i : xi 6= zi} =

1.

3. Q̂J
x is a coupling of γJx , γ̃

J
x for J ∈ J and x ∈ S≤τ(J).

We can now state a one-sided counterpart to Theorem 6.4, which will be proved
in Section C.5.

Theorem 6.12 (General comparison theorem, one-sided). Let (γJ , γ̃J , QJ , Q̂J)J∈J
be a one-sided coupled update rule for (ρ, ρ̃), and let (wJ)J∈J be a family of strictly
positive weights. Define the matrices W and R and the vector a as in Theorem 6.4.
Assume that γJ is quasilocal for every J ∈ J, that

∑

j∈I

Dij (ρ⊗ ρ̃)ηj <∞ for all i ∈ I where D :=
∞∑

n=0

(W−1R)n, (6.2)

and that (6.1) holds. Then we have

|ρf − ρ̃f | ≤
∑

i,j∈I

oscif DijW
−1
jj aj

for any bounded and measurable quasilocal function f such that oscif < ∞ for all
i ∈ I.
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Let us remark that the result of Theorem 6.12 is formally the same as that of
Theorem 6.4, except that we have changed the nature of the update rules used in the
definition of the coefficients. We also require a further assumption (6.2) in addition to
assumption (6.1) of Theorem 6.4, but this is not restrictive in practice: in particular,
it is readily verified that the conclusion of Theorem 6.12 also holds under any of the
conditions of Corollary 6.8.

6.4 Application: block particle filter

Our original motivation for developing the generalized comparison theorems of this
chapter was the investigation of algorithms for filtering in high dimension. In this
section we state a result that improve qualitatively Theorem 4.2—the main result of
Chapter 4—on the analysis of the block particle filter.

We assume to be in the same set up of Chapter 4, and we refer to Section 4.4.2
therein for a discussion that motivates the importance of the following theorem. The
proof of this result, which relies crucially on the generalized comparison theorems
developed in this chapter, is provided in Appendix C, Section C.6.

Theorem 6.13 (Block particle filter, improved version of Theorem 4.2). For any
0 < δ < 1 there exists 0 < ε0 < 1, depending only on δ and ∆, such that the following
holds. Suppose there exist ε0 < ε < 1 and 0 < κ < 1 so that

εqv(xv, zv) ≤ pv(x, zv) ≤ ε−1qv(xv, zv),

δ ≤ qv(xv, zv) ≤ δ−1,

κ ≤ gv(xv, yv) ≤ κ−1

for every v ∈ V , x, z ∈ X, y ∈ Y, where qv : Xv × Xv → R̄+ is a transition density
with respect to ψv. Then for every n ≥ 0, σ ∈ X, K ∈ K and J ⊆ K we have

|||πσn − π̂σn|||J ≤ α card J

[
e−β1d(J,∂K) +

eβ2|K|∞

Nγ

]
,

where 0 < γ ≤ 1
2

and 0 < α, β1, β2 <∞ depend only on δ, ε, κ, r, ∆, and ∆K.

In Theorem 6.13, the parameter ε controls the spatial correlations while the pa-
rameter δ controls the temporal correlations (in contrast to Theorem 4.2, where both
are controlled simultaneously by ε). The key point is that δ can be arbitrary, and only
ε must lie above the threshold ε0. That the threshold ε0 depends on δ is natural: the
more ergodic the dynamics, the more spatial interactions can be tolerated without
losing decay of correlations.

The proof of Theorem 4.2 was based on repeated application of the classical Do-
brushin comparison theorem (Corollary 6.6). While there are some significant dif-
ferences between the details of the proofs, the essential improvement that makes it
possible to prove Theorem 6.13 is that we can now exploit the generalized comparison
theorem (Theorem 6.4), which enables us to treat the spatial and temporal degrees
of freedom on a different footing (see Section C.6).
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Chapter 7

Nonlinear filtering in infinite
dimension

This chapter is devoted to showing that filtering in infinite dimension is qualitatively
different from filtering in finite dimension. We show that new phenomena arise in the
infinite-dimensional setting, specifically that inheritance of ergodicity (in the form of
stability or decay of correlations) can undergo a phase transition in the signal-to-noise
ratio. The qualitative setting of this chapter is complementary to the quantitative
framework previously considered in this thesis. The material here presented is taken
from the paper [42], which further develops this set of ideas by providing conditions
to guarantee inheritance of ergodicity.

7.1 Motivations

In Chapter 4 and Chapter 5 we have shown that local filtering algorithms can at-
tain dimension-free approximation errors in high-dimensional models that exhibit
conditional decay of correlations. The natural tool to capture and exploit decay of
correlations is given by the Dobrushin comparison theorem, and in Chapter 6 we
extended this machinery by introducing more general comparison theorems.

The framework developed in the previous chapters is complementary in nature
to the one developed in the present chapter: the former provide quantitative esti-
mates under strong (‘high-temperature’) assumptions, while the latter focuses on the
qualitative understanding of ergodic properties of the filter distribution. In fact, as
discussed in Section 4.4.1, the local analysis of filtering algorithms that we have de-
veloped relies on the crucial assumption that we can establish proper forms of filter
stability and decay of correlations. Presently, we address the fundamental question
of the inheritance of such properties upon conditioning.

To discuss the topic of this chapter, let (Xk, Yk)k≥0 be a bivariate Markov chain
of the kind considered in this thesis. Such a model represents the setting of partial
information: it is presumed that only (Yk)k≥0 can be observed, while (Xk)k≥0 defines
the unobserved dynamics. In order to understand the behavior of the unobserved
process given the observations, it is natural to “lift” the unobserved dynamics to the
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level of conditional distributions, that is, to investigate the nonlinear filter

πk := P(Xk ∈ · |Y1, . . . , Yk).

Under standard assumptions on the observation structure, the process (πk)k≥0 is itself
a measure-valued Markov chain. The fundamental question that arises in this setting
is to understand in what manner the probabilistic structure of the model (Xk, Yk)k≥0

“lifts” to the conditional distributions (πk)k≥0.
Of particular interest in this context is the behavior of ergodic properties under

conditioning. It is natural to suppose that the ergodic properties of (Xk, Yk)k≥0 will
be inherited by the filter (πk)k≥0: for example, if Xk forgets its initial condition
as k → ∞, then the optimal mean-square estimate of Xk (and therefore the filter
πk) should intuitively possess the same property. Such a conclusion was already
conjectured by Blackwell as early as 1957 [5], and a proof was provided by Kunita
in 1971 [33]. Unfortunately, both the proof and the conclusion are erroneous: it is
elementary to construct a finite-state Markov chain (Xk, Yk)k≥0 that is 1-dependent
(as strong an ergodic property as one could hope for) with observations of the form
Yk = h(Xk−1, Xk) such that the corresponding filtering process (πk)k≥0 is nonergodic,
see Example 7.1 below.1

Despite the appearance of counterexamples already in the most elementary setting,
recent advances have provided a surprisingly complete picture of such problems in a
general setting. On the one hand, it has been shown under very general assumptions
[57, 52] that ergodicity of the underlying model is inherited by the filter when the
observations are nondegenerate, that is, when the conditional law of each observation
P(Yk ∈ · |X) has a positive density with respect to some fixed reference measure.
This is a mild condition in classical filtering models that serves mainly to rule out the
singular case of noiseless observations: for example, the addition of any observation
noise to the above counterexample would render the filter ergodic. On the other hand,
even in the noiseless case, ergodicity is inherited in the absence of certain symmetries
that are closely related to systems-theoretic notions of observability [54, 56, 58, 9].
One can therefore conclude that while there exist elementary examples where the
ergodicity of the model fails to be inherited by the filter, such examples must be
very fragile as they require both a singular observation structure and the presence of
unusual symmetries, either of which is readily broken by a small perturbation of the
model.

The theory outlined above provides a satisfactory understanding of conditional
ergodicity in classical filtering models. Some care must be taken, however, in in-
terpreting this conclusion. The ubiquitous applicability of the theory hinges on the
notion that most filtering models possess observation densities, an assumption made
almost universally in the filtering literature (cf. [13] and the references therein).
This assumption is largely innocuous in finite-dimensional systems. The situation is
entirely different in infinite dimension, where singularity of probability measures is
the norm. There exists almost no mathematical literature on filtering in infinite di-
mension, despite the substantial practical importance of infinite-dimensional filtering

1 Surprisingly, the counterexample (intended for a different purpose) appears in Blackwell’s own
paper [5].
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models in data assimilation problems that arise in areas such as weather forecasting
or geophysics [49]. The aim of this chapter is to draw attention to the fact that,
far from being a technical issue, the infinite-dimensional setting gives rise to new
probabilistic phenomena and questions in filtering theory that are fundamentally
different than those that have been studied in the literature to date, and whose
understanding remains limited.

To model a filtering problem in infinite dimension we extend the framework in-
troduced in Section 4.1. We now suppose that (Xk, Yk)k≥0 is a Markov chain in the
product state space EV ×F V , where E,F are local state spaces and V is a countably
infinite set of sites (for concreteness, we fix V = Zd throughout). Each element of V
should be viewed as a single dimension of the model. A more practical interpretation
is that V defines a spatial degree of freedom and that (Xk, Yk)k≥0 describes the dy-
namics of a time-varying random field, as is the case in data assimilation applications.
In accordance with this interpretation, we will assume that the dynamics of the state
Xk and the observations Yk are local in nature: that is, the conditional distributions
of the local state Xv

k given the previous state Xk−1, and of the local observation Y v
k

given the underlying process X, depend only on Xw
k−1 and Xw

k for sites w ∈ V that
are neighbors of v. In essence, our basic model therefore consists of an infinite family
of local filtering models (Xv

k , Y
v
k )k≥0 whose dynamics are locally coupled according to

the graph structure of V = Zd.
In Section 7.2 we review the classical results on the inheritance of filter stability,

and we discuss Blackwell’s Example 7.1. In Section 7.3 we introduce the canoni-
cal infinite-dimensional model that will be studied in this chapter, and in Section
7.4 we investigate the natural infinite-dimensional version of Blackwell’s Example.
Recall that it was crucial in the finite-dimensional setting that the observations
Yk = h(Xk−1, Xk) are noiseless: the addition of any noise renders the observations
nondegenerate and then ergodicity is preserved. This is no longer the case in infinite
dimension: even if the local observations Y v

k are nondegenerate, the failure of the
filter to inherit ergodicity can persist. In fact, we observe a phase transition: the
filter fails to be ergodic when the noise is small, but becomes ergodic when the noise
strength exceeds a strictly positive threshold. The remarkable feature of this phe-
nomenon is that no qualitative change of any kind occurs in the ergodic properties of
the underlying model: (Xv

k , Y
v
k )k≥0,v∈V is a 1-dependent random field for every value

of the noise parameter. We are therefore in the surprising situation that complex er-
godic behavior emerges in an otherwise trivial model when we consider its conditional
distributions. Such conditional phase transitions cannot arise in finite dimension.

The above example indicates that our intuition about inheritance of ergodicity,
which fails in classical filtering models only in pathological cases, cannot be taken
for granted in infinite dimension even under local nondegeneracy assumptions. This
raises the question as to whether there are situations in which the inheritance of
ergodicity is guaranteed. In view of the finite-dimensional theory, in Section 7.5 we
conjecture that this might be the case under a symmetry breaking assumption. We
refer to the paper [42] for a more detailed discussion on this conjecture, and for some
positive results that go towards proving it.
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In Section 7.6 we turn our attention to the counterpart of the filter stability
problem in the setting of Markov random fields. Such problems provide a simple
setting for the investigation of decay of correlations in filtering problems, and are
of interest in their own right as models that arise, for example, in image analysis
[66, 26]. Here the natural question of interest is whether the spatial mixing properties
of random fields are inherited by conditioning on local observations. Again, we refer
to the paper [42] for more details on the matter.

7.2 Inheritance of ergodicity: classical results

The goal of this section is to set up the basic filtering problem that will be studied in
the sequel. We begin by defining a general setting for nonlinear filtering that slightly
generalizes the one introduced in Chapter 3, and we introduce and discuss the basic
ergodicity question to be studied.

Throughout this chapter, we model dynamics with partial information as a hidden
Markov models where (Xk, Yk)k≥0 is a Markov chain that has the additional property
that its transition kernel factorizes as

P((Xk, Yk) ∈ A|Xk−1, Yk−1) =

∫
1A(x, y)P (Xk−1, dx) Φ(Xk−1, x, dy)

for given transition kernels P and Φ: the factorization corresponds to the assumption
that (Xk)k≥0 is a Markov chain in its own right, and that the observations (Yk)k≥0

are conditionally independent given (Xk)k≥0. More general settings could also be
considered, see [51] for instance.

For the time being, we assume that Xk and Yk take values in an arbitrary Polish
space (we will define a more concrete infinite-dimensional setting in Section 7.3 below).
The nonlinear filter is defined as the regular conditional probability

πk := P(Xk ∈ · |Y1, . . . , Yk).

We are interested in the question of whether (πk)k≥0 inherits the ergodic properties of
the underlying dynamics (Xk)k≥0. There are several different but closely connected
ways to make this question precise (cf. Remark 7.3 below). For concreteness, we will
focus attention on one particularly elementary formulation of this question that will
serve as the guiding problem to be investigated throughout this chapter.

We will assume in the sequel that the Markov chain (Xk)k≥0 admits a unique
invariant measure λ. As P(Xk, Yk ∈ ·|Xk−1, Yk−1) does not depend on Yk−1 due to
the hidden Markov structure, the invariant measure λ extends uniquely to an invariant
measure for the chain (Xk, Yk)k≥0, and we denote the unique stationary law of this
process as P. By stationarity, we can assume in the sequel that (Xk, Yk)k∈Z is defined
also for k < 0.

Throughout this chapter, the ergodic property of (Xk)k≥0 that we will consider is
stability in the sense that

|P(Xk ∈ A|X0)− λ(A)| k→∞−−−→ 0 in L1
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for every measurable set A: that is, the law of Xk “forgets” the initial condition X0

as k →∞. The analogous conditional property is filter stability in the sense that

|P(Xk ∈ A|X0, Y1, . . . , Yk)−P(Xk ∈ A|Y1, . . . , Yk)| k→∞−−−→ 0 in L1

for every measurable set A: that is, the conditional distribution of Xk given the ob-
served data “forgets” the initial condition X0 as k →∞. It is natural to suppose that
stability of the underlying dynamics will imply stability of the filter. This conclusion
is incorrect, however, as is illustrated by the following classical example [5].

Example 7.1 (Blackwell’s example). Let (Xk)k≥0 be an i.i.d. sequence of random
variables with P(Xk = 1) = P(Xk = −1) = 1/2, and let Yk = XkXk−1 for k ≥ 1.
This evidently defines a stationary hidden Markov model with P (x, ·) = (δ1 + δ−1)/2
and Φ(x′, x, ·) = δxx′. Note that

Xk = X0Y1Y2 · · ·Yk.

We can therefore easily compute for every k ≥ 0

P(Xk = 1|X0, Y1, . . . , Yk) = 1Xk=1,

P(Xk = 1|Y1, . . . , Yk) = 1/2.

Thus the filter is certainly not stable. On the other hand, underlying dynamics (Xk)k≥0

is an i.i.d. sequence, and is therefore stable in the strongest possible sense:

P(Xk ∈ A|X0) = λ(A) for all k ≥ 1.

Moreover, even the process (Xk, Yk)k≥0 is stable in the strongest possible sense: it is
a 1-dependent sequence, so that P((Xk, Yk) ∈ A|X0, Y0) = P((Xk, Yk) ∈ A) for all
k ≥ 2.

Example 7.1 shows that the inheritance of ergodicity under conditioning cannot
be taken for granted. Nonetheless, the phenomenon exhibited here is very fragile: if
the observations are perturbed by any noise (for example, if we set Yk = XkXk−1ξk
with P(ξk = −1) = 1 − P(ξk = 1) = p and any 0 < p < 1), the filter will become
stable. The inheritance of ergodicity is therefore apparently obstructed by the singu-
larity of the observation kernel Φ. To rule out such singular behavior, it is natural
to require that the observation kernel Φ possesses a positive density with respect to
some reference measure ϕ. A model with this property is said to possess nondegen-
erate observations. One might now expect that nondegeneracy of the observations
removes the obstruction to inheritance of ergodicity observed in Example 7.1. Un-
fortunately, this is still not the case in complete generality, as is demonstrated by
an esoteric counterexample in [59]. However, the conclusion does hold if we use a
stronger uniform notion of stability.

Theorem 7.2 (Inheritance of stability [57]). Suppose that the following hold.

107



1. The underlying dynamics is uniformly stable in the sense

sup
A
|P(Xk ∈ A|X0)− λ(A)| k→∞−−−→ 0 in L1.

2. The observations are nondegenerate in the sense

Φ(x′, x, dy) = g(x′, x, y)ϕ(dy), g(x′, x, y) > 0 for all x, x′, y.

Then the filter is uniformly stable in the sense

sup
A
|P(Xk ∈ A|X0, Y1, . . . , Yk)−P(Xk ∈ A|Y1, . . . , Yk)| k→∞−−−→ 0 in L1.

This result, together with the mathematical theory behind its proof provides a very
general qualitative understanding of the inheritance of ergodicity in classical filtering
models. However, as will be explained below, this theory breaks down completely in
infinite-dimensional models. In the remainder of this chapter, we will see that new
phenomena arise in the infinite-dimensional setting.

Remark 7.3 (Different formulations of filter stability). The question of inheritance
of ergodic properties under conditioning can be formulated in a number of different
ways. For concreteness, we focus our attention in this chapter on the elementary
formulation introduced above. As the choice of problem is somewhat arbitrary, let us
briefly describe a number of alternative formulations.

In the setting of stability of the filter, we have considered “forgetting” of the initial
condition X0 under the stationary measure. Similar problems can be formulated,
however, in a more general setting. Denote by Pµ the law of the process (Xk, Yk)k≥0

with the initial distribution X0 ∼ µ. A natural notion of stability is to require that

Pµ(Xk ∈ ·) k→∞−−−→ λ for every µ

in a suitable topology on probability measures. If we define the filter started at µ
as πµk := Pµ(Xk ∈ ·|Y1, . . . , Yk), we can now investigate the general filter stability
problem

|πµk (f)− πνk(f)| k→∞−−−→ 0 in L1(Pγ)

for a suitable class of measures µ, ν, γ and functions f . The formulation that we
consider in this chapter corresponds to the special case ν = λ and µ = γ = δx for x
outside a λ-null set. Nonetheless, our formulation proves to be equivalent in a rather
general setting to stability for general initial measures µ, ν, γ, cf. [13, Chapter 12] and
[57, 52].

A different and perhaps more natural formulation dates back to Blackwell [5] and
Kunita [33]. Using the Markov property of the underlying model, it is not difficult
to show that the measure-valued stochastic process (πk)k≥0 is itself a Markov chain,
cf. [59, Appendix A]. One can now ask whether the ergodic properties of the Markov
chain (Xk)k≥0 “lift” to ergodic properties of the Markov chain (πk)k≥0. For example, if
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(Xk)k≥0 admits a unique stationary measure, does (πk)k≥0 admit a unique stationary
measure also? Similarly, if (Xk)k≥0 converges to its stationary measure starting from
any initial condition, does the same property hold for (πk)k≥0? Remarkably, while
these questions appear in first instance to be quite distinct from the question of filter
stability, such properties again prove to be equivalent in a very general setting to the
notion of filter stability that we consider in this chapter, cf. [33, 48, 9, 13, 59].

A third formulation of inheritance of ergodicity under conditioning is obtained
when we consider, rather than the filter, the conditional distribution of the entire
process X = (Xk)k∈Z given the infinite observation sequence Y = (Yk)k∈Z. Using the
Markov property of the underlying model, it is not difficult to establish that X is still a
Markov process under the conditional distribution P( · |Y ), albeit time-inhomogeneous
and with transition probabilities that depend on the realized observation sequence Y :
that is, the conditional process is a Markov chain in a random environment. One
can now ask whether the process X inherits its ergodic properties under P when it
is considered under the conditional distribution P( · |Y ). Once again, this apparently
distinct formulation proves to be equivalent in a general setting the formulation con-
sidered in this chapter, a fact that is exploited heavily in the theory of [57, 52].

It is now well understood that the properties described above are equivalent in clas-
sical filtering models. While some of these arguments extend directly to the infinite-
dimensional setting, others do not, and it remains to be investigated to what extent
these equivalences remain valid in infinite dimension. Nonetheless, the problem for-
mulation considered here is arguably the most elementary one, and provides a natural
starting point for the investigation of conditional phenomena in infinite dimension.

Remark 7.4 (On observability). Even when the underlying dynamics (Xk)k≥0 is not
stable, it may be the case that the filter is stable. For example, using the trivial obser-
vation model Yk = Xk, the filter is stable regardless of any properties of the underlying
model. More generally, the filter is expected to be stable when the observations are
“sufficiently informative,” which is made precise in [54, 56, 58] in terms of nonlinear
notions of observability. Such results are in some sense the opposite of Theorem 7.2:
the latter shows that ergodicity is inherited by the filter, while the former show that
the filter can be ergodic regardless of ergodicity of the underlying model (even without
nondegeneracy). None of these results prove to be satisfactory in infinite dimension:
it appears that a general theory for ergodicity of the filter will require both ergodicity
of the underlying model and some form of observability, as will become evident in the
following sections.

7.3 The infinite-dimensional model

The aim of this chapter is to show that new phenomena arise in filtering theory in
infinite dimension. So far, no assumptions have been made on the model dimension:
we have set up our theory in any Polish state space. Nonetheless, while no explicit
dimensionality requirements appear, for example, in Theorem 7.2, the assumptions
of previous results can typically hold only in finite-dimensional situations. To under-
stand the problems that arise in infinite dimension, and to provide a concrete setting
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for the investigation of conditional phenomena in infinite dimension, we presently in-
troduce a canonical infinite-dimensional filtering model that will be used in the sequel
(this model represents a generalization of the finite-dimensional model considered in
Section 4.1).

The practical interest in infinite-dimensional filtering models stems from problems
that have spatial in addition to dynamical structure. To model this situation, let us
assume for concreteness that the spatial degrees of freedom are indexed by the infinite
lattice Zd. We also define Polish spaces E and F that describe the state of the model
at each spatial location. We now assume that Xk and Yk are random fields that are
indexed by Zd and take values locally in E and F , respectively, for every time k: that
is,

Xk = (Xv
k )v∈Zd ∈ EZd and Yk = (Y v

k )v∈Zd ∈ F Zd .

Each v ∈ Zd should be viewed as a single “dimension” of the model.2 We now define a
hidden Markov model that respects the spatial structure of the problem by assuming
that both the underlying dynamics and the observations are local : that is, we assume
that the transition and observation kernels P and Φ factorize as

P (x, dz) =
∏

v∈Zd
P v(x, dzv), Φ(x, z, dy) =

∏

v∈Zd
Φv(x, z, dyv),

where

P v(x,A) and Φv(x, z, B) depend only on xw, zw for ‖w − v‖ ≤ 1.

Such a model should be viewed as a hidden Markov model counterpart of probabilistic
cellular automata [35] or interacting particle systems [36] that have been widely in-
vestigated in the literature as natural models of space-time dynamics. Alternatively,
one might view such a model as an infinite collection (Xv

k , Y
v
k )k≥0 of hidden Markov

models whose dynamics and observations are locally coupled to their neighbors in Zd.
While problems of this type have been rarely considered in filtering theory, the

infinite-dimensional model that we have formulated is in principle a special case of
the general model described in the previous section. However, its structure is such
that the assumptions of a result such as Theorem 7.2 typically cannot hold. Let
us consider, for example, the setting where each local observation Y v has a positive
density of the form Φv(x, z, dyv) = g(zv, yv)ϕ(dyv), so that the observations are
locally nondegenerate. Choose two values e, e′ ∈ E such that g(e, ·) 6= g(e′, ·), and
define the constant configurations z, z′ as zv = e and z′v = e′ for all v ∈ Zd. Then
the measures Φ(x, z, ·) and Φ(x, z′, ·) are two distinct laws of an infinite number of
i.i.d. random variables, and are therefore mutually singular (cf. Proposition 2.14).
This immediately rules out the possibility that the observations are nondegenerate
in the sense of Theorem 7.2. It is precisely this problem that lies at the heart of the

2 The present setting is easily extended to the setting of more general locally finite graphs and
to the setting where each location v may possess a different local state space Ev. Such an extension
does not illuminate significantly the phenomena that will be investigated in the sequel. On the
other hand, a nontrivial extension of substantial interest in applications is to continuous infinite-
dimensional models such as stochastic partial differential equations, cf. [49].
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difficulties in infinite-dimensional models: probability measures in infinite dimension
are typically mutually singular, even when they admit densities locally (that is, for
any finite-dimensional marginal); see Section 2.4. In the absence of densities, classical
results in filtering theory cannot be taken for granted, and the study of filtering
in infinite dimension gives rise to fundamentally different problems than have been
studied in the literature to date. We initiate the investigation of such problems in
the sequel.

Remark 7.5 (Observations: the problem in infinite dimension). The singularity
of measures in infinite dimension is problematic not only for the nondegeneracy of
observations, but also for the ergodic theory of Markov chains. For example, the
uniform stability property in Theorem 7.2 will rarely hold in infinite dimension: it is
often the case that the law of Xk is singular with respect to λ for all k < ∞, which
rules out total variation convergence (see [52, Example 2.3] for a simple illustration).
However, this issue is surmounted in [52] using a form of localization: by performing
the analysis of Theorem 7.2 locally (that is, to finite-dimensional projections of the
original model), we can avoid the singularity of the full infinite-dimensional problem.
This allows to extend the conclusion of Theorem 7.2 to a wide range of infinite-
dimensional models with nondegenerate observations. In practice, this implies that
much of the classical filtering theory extends, at least in spirit, to models where Xk

is infinite-dimensional but Yk is (effectively) finite-dimensional. It is only when the
observations Yk are also infinite-dimensional that new phenomena arise.

Remark 7.6 (On infinite-dimensional models). Let us note that we have used the
term “infinite-dimensional” to denote the situation where there are infinitely many
independent degrees of freedom, which is the key issue in our setting. The problem of
dimension is unrelated to the linear algebraic or metric dimension of the state space:
indeed, even each of the local state spaces E and F in our model can itself be an
arbitrary Polish space. Conversely, it is possible to have infinite-dimensional systems
that are “effectively finite-dimensional” in the sense that only finitely many degrees
of freedom carry significant information. This is common, for example, in stochastic
partial differential equations (see, e.g., [52]). See also Section 2.4.

At the same time, it should be noted that even in finite-dimensional systems where
results such as Theorem 7.2 technically apply, the qualitative information contained
in such statements may be misleading from the practical point of view: in finite but
high-dimensional systems, phenomena that arise qualitatively in infinite dimension
are still manifested in a quantitative fashion (see Chapter 4 for quantitative results
and discussion on filtering in high dimension). For example, if the filter is not stable
for the infinite-dimensional model, it will often still be the case that the filter is stable
for every finite-dimensional truncation of the model; however, the quantitative rate
of stability will vanish rapidly as the dimension is increased. Conversely, if the filter
is stable for the infinite-dimensional model, then the rate of stability of the filter for
the finite-dimensional models will be dimension-free. As it is ultimately the quantita-
tive behavior of filtering algorithms that is of importance in practice, the qualitative
phenomena investigated here in infinite dimension can still provide more insight into
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the behavior of practical filtering problems in high dimension than classical results in
filtering theory.

7.4 A conditional phase transition

We now develop a simple example of the general infinite-dimensional setting of Section
7.3 where we observe nontrivial behavior of the inheritance of ergodicity. This model,
to be described presently, is a natural infinite-dimensional variation on Blackwell’s
counterexample (Example 7.1 above).

Throughout this section,

Xk = (Xv
k )v∈Z ∈ {−1, 1}Z and Yk = (Ȳ v

k , Ŷ
v
k )v∈Z ∈ ({−1, 1} × {−1, 1})Z

are binary random fields in one spatial dimension. We let

(Xv
k )k,v∈Z are i.i.d. with P(Xv

k = 1) = 1/2,

and we let
Ȳ v
k = Xv

kX
v
k−1ξ̄

v
k , Ŷ v

k = Xv
kX

v+1
k ξ̂vk ,

where
(ξ̄vk)k,v∈Z, (ξ̂vk)k,v∈Z are i.i.d. with P(ξ̄vk = −1) = p

and (ξ̄vk)k,v∈Z, (ξ̂vk)k,v∈Z are independent of (Xv
k )k,v∈Z.

This evidently corresponds to a model of the form discussed in Section 7.3. In
words, the underlying dynamics is of the simplest possible type: each time and each
spatial location is an independent random variable. When p = 0, the observations
reveal for each site whether its current state differs from its state at the previous
time and from the states of its two neighbors at the present time. When p > 0, each
observation is subject to additional noise that inverts the outcome with probability
p. By symmetry, it will suffice to consider the case p ≤ 1/2, which we will do from
now on.

The model that we have constructed is evidently a direct extension of Example
7.1 to infinite dimension. As in Example 7.1, the process (Xk, Yk)k∈Z is ergodic in
the strongest sense, so that even the uniform stability assumption of Theorem 7.2 is
satisfied. When p = 0, it is easily seen by the same reasoning as in Example 7.1 that
the filter is not stable. However, in Example 7.1 the addition of observation noise
with error probability p > 0 would yield nondegenerate observations, and thus filter
stability by Theorem 7.2. In the present setting, on the other hand, nondegeneracy
fails for any p. Nonetheless, the observations are locally nondegenerate when p > 0,
and one might conjecture that this suffices to ensure inheritance of ergodicity. This
is not the case.

Theorem 7.7 (Inheritance of stability, phase transition). For the model of this
section, there exist constants 0 < p? ≤ p? < 1/2 such that the filter is stable for
p? < p ≤ 1/2 and is not stable for 0 ≤ p < p?.
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We refer to Appendix D for the proof of Theorem 7.7. The proof relies on standard
tools from statistical mechanics [7, 27]: a Peierls argument for the low noise regime
and a Dobrushin contraction method for the high noise regime.

Remark 7.8. We naturally believe that one can choose p? = p? in Theorem 7.7, but
we did not succeed in proving that. The proof yields some explicit bounds on p? and
p?.

Theorem 7.7 shows that local nondegeneracy does not suffice to ensure inheri-
tance of ergodicity in infinite dimension: ergodicity of the filter undergoes a phase
transition at a strictly positive signal to noise ratio of the observations. Remarkably,
the underlying model does not seem to exhibit any qualitative change in behavior:
(Xv

k , Y
v
k )k,v∈Z is a one-dependent random field for every value of the error probability

p. Thus it is evidently possible in infinite dimension that complex ergodic behavior
emerges in an otherwise trivial model when we consider its conditional distributions.

7.5 Conjecture on inheritance of stability

Theorem 7.7 shows that inheritance of ergodicity under conditioning cannot be taken
for granted in infinite dimension even when the model is locally nondegenerate. Are
such phenomena prevalent in infinite dimension, or are they restricted to some care-
fully constructed examples? We would like to understand in what situations such
phenomena can be ruled out, both from the mathematical perspective and in view
of the importance of filter stability (as well as spatial decay of correlations in infinite
dimension) for the performance of practical filtering algorithms, as seen in Chapter 4
and Chapter 5.

It is not difficult to understand the mechanism that causes the filter to be un-
stable in Theorem 7.7. In this model, the observations possess a global symmetry:
the conditional law of Y is unchanged under the transformation X 7→ −X. This
symmetry renders the filter trivially unstable in the absence of observation noise, in
precise analogy with Example 7.1. In the finite-dimensional case, however, Theorem
7.2 shows that the addition of any observation noise suffices to ensure that ergod-
icity of the underlying model is not broken by the additional symmetry introduced
by conditioning. The surprise in infinite dimension is that the qualitative effect of
the added symmetry still persists in the presence of observation noise. Thus local
nondegeneracy in itself does not suffice to ensure the inheritance of ergodicity under
conditioning.

On the other hand, the phenomenon exhibited in Theorem 7.7 evidently cannot
arise in models that do not possess observation symmetries. It seems natural to
conjecture that the presence of such symmetries is the only possible obstruction to
inheritance of ergodicity under conditioning: that is, inheritance of ergodicity is en-
sured once observation symmetries are ruled out. It is not entirely obvious, however,
how such a principle can be rigorously formulated. On the other hand, even in the
absence of a general definition, this intuitive notion should certainly be satisfied in
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many elementary observation models. For example, let us state the following sim-
ple conjecture, which encapsulates the essence of the above intuition in the simplest
possible setting.

Conjecture 7.9. Let (Xk, Yk)k∈Z be a stationary infinite-dimensional hidden Markov
model as in Section 7.3 with Xk ∈ {−1, 1}Z and with Yk ∈ {−1, 1}Z of the form

Y v
k = Xv

kξ
v
k , (ξvk)k,v∈Z are i.i.d. ⊥⊥ X with P(ξvk = −1) = p.

If the underlying process (Xk)k∈Z is stable, then the filter is stable.

The idea behind this conjecture is that the direct observation structure Y v
k = Xv

kξ
v
k

is evidently devoid of symmetries for any p 6= 1
2
: every configuration x ∈ {−1, 1}Z

gives rise to a distinct observation law P(Yk ∈ · |Xk = x) (the case p = 1
2

is trivial as
then Y ⊥⊥ X; we will therefore assume p 6= 1

2
in the sequel). Thus any mechanism of

the type exhibited by Theorem 7.7 is ruled out, and it seems hard to imagine another
mechanism by which ergodicity of the underlying process could be obstructed due to
conditioning on such informative observations. Despite the seemingly obvious nature
of this conjecture, we were not able to prove such a result in a general setting.

The idea that stability of the filter is related to the absence of symmetries is not
new in the infinite-dimensional setting. It arises already in classical filtering models
for a somewhat different reason: it may happen that the filter is stable even when the
underlying model is not ergodic. In such situations, stability properties can emerge
under the conditional distribution due to the informative nature of the observations;
in essence, the filter will “forget” its initial distribution as the information contained
therein is superseded by the information in the observations. This phenomenon was
made precise in the papers [54, 56, 58]. While the theory developed in these papers
is closely related to the symmetry breaking properties that we aim to exploit here,
these results are not satisfactory in infinite dimension.

In the paper [42] we extend such observability arguments to translation-invariant
systems in infinite dimension by exploiting a technique from multidimensional ergodic
theory [12]. Somewhat surprisingly, the problem proves to be more tractable in
the continuous-time setting, for which will establish validity of the natural analogue
of Conjecture 7.9. In its original discrete time formulation, however, our ultimate
result falls short of establishing Conjecture 7.9 even for translation-invariant models.
Nonetheless, the theory developed here provides one possible mechanism for symmetry
breaking in conditional ergodic theory.

7.6 Conditional random fields

Thus far we have considered infinite-dimensional counterparts of classical stability
problems in nonlinear filtering. However, new questions arise in infinite dimension
beyond stability that are of interest in their own right. In particular, for the theory
developed in Chapter 4 and Chapter 5 it is of significant interest to understand
the spatial mixing and decay of correlations properties of conditional distributions
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in infinite dimension, which could be viewed as spatial counterparts to the filter
stability property. Such questions already arise in the absence of dynamics, and thus
we proceed in this section to introduce such problems in the most basic setting of
conditional random fields (that is, in models with only spatial degrees of freedom).
Our motivations for such questions are threefold:

1. Random fields provide the simplest possible setting to investigate the spatial
mixing properties of conditional distributions.

2. Conditional random fields are of practical interest in their own right, for exam-
ple, in Bayesian image analysis applications [66, 26].

3. Even in the more classical setting of the previous sections, the random field
viewpoint proves to be fundamental to the understanding of filter stability in
infinite dimension: indeed, the proofs in Section 7.4 and in Chapter 4 and
Chapter 5 exploit the idea that (Xv

k , Y
v
k )k∈Z,v∈Zd can be viewed as a space-time

random field.

The remainder of this chapter is organized as follows. In Section 7.6.1, we recall
some basic notions from the theory of Markov random fields. In Section 7.6.2, we de-
velop basic properties of conditional random fields and introduce some of the relevant
questions.

7.6.1 Markov random fields

A random field is a collection of random variables Xv that are indexed by the spatial
degree of freedom v. For simplicity, we will assume in the sequel that v ∈ Zd and
that each Xv takes values in a finite set E.

In the following, we define for any V ⊆ Zd

V c := Zd\V, ∂V := {w ∈ V c : ‖v−w‖ = 1 for some v ∈ V }, XV := (Xv)v∈V .

If V is a finite subset of Zd, we will write V ⊂⊂ Zd. We now recall a basic definition.

Definition 7.10. X = (Xv)v∈Zd is called a Markov random field if it possesses the
(local) Markov property, that is, P(XV ∈ ·|XV c) depends only on X∂V for every
V ⊂⊂ Zd.

Just as Markov chains are defined by transition probabilities, Markov random
fields are defined by a family of local transition kernels called a specification [27,
Chapter 1] (cf. Remark 6.1).

Definition 7.11. A family γ = (γV )V⊂⊂Zd of transition kernels on EZd such that

1. γV (x,A) is a function of x∂V for every measurable A ⊆ EZd and V ⊂⊂ Zd,

2. γV (x,A) = 1A(x) for every A ∈ σ{XV c} and V ⊂⊂ Zd,

3. γV γW = γV for every W ⊂ V ⊂⊂ Zd,
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is called a specification. A Markov random field X is said to be specified by γ if we
have P(X ∈ A|XV c) = γV (X,A) for every measurable set A and V ⊂⊂ Zd. The
family of all laws of Markov random fields specified by γ is denoted G (γ).

Example 7.12. Standard constructions of Markov random fields arise in statistical
mechanics in the following manner. Let ψv : E → R and ϕ{v,w} : E × E → R for
v, w ∈ Zd with ‖v − w‖ = 1 be given potential functions, and let

γV (x,A) =
1

Z

∑

xV ∈EV
1A(x) exp

( ∑

{v,w}⊂V ∪∂V :‖v−w‖=1

ϕ{v,w}(xv, xw) +
∑

v∈V

ψv(xv)

)

where Z is the appropriate normalization factor. It can be easily verified that γ =
(γV )V⊂⊂Zd defines a specification. The potentials ψv and ϕ{v,w} describe the local
external and interaction forces between different sites, and are defined directly in
terms of the physical parameters of the problem. For example, if E = {−1, 1},
ϕ{v,w}(σ, σ

′) = βJσσ′, and ψv(σ) = βµσ with β, J > 0 and µ ∈ R, this is the well
known ferromagnetic Ising model with inverse temperature β, interaction strength J
and magnetic field strength µ. The construction in terms of potentials will be inessen-
tial in the sequel, however.

Given a specification γ, there always exists a random field in G (γ) under our
assumptions. However, just as a Markov chain with given transition probabilities
may admit more than one stationary distribution, the random field associated to a
given specification need not be unique. In fact, the structure of the set G (γ) is closely
related to the spatial mixing properties of the associated random fields, as is shown
by the following result [27, section 4.4, Proposition 7.11, Theorem 7.7]. To interpret
the notion of extremality that arises here, note that if P and Q are the laws of two
random fields in G (γ), then λP + (1−λ)Q is also in G (γ) for 0 ≤ λ ≤ 1 [27, Chapter
7]; thus G (γ) is a convex set, and a random field is called extremal if it is an extreme
point of this set.

Theorem 7.13. For a given specification γ, the following hold.

1. Existence of a random field: G (γ) 6= ∅.

2. Uniqueness⇔ uniform mixing: |G (γ)| = 1 iff a random field in G (γ) satisfies3,4

lim
W⊂⊂Zd

sup
x
|P(XV ∈ A|XW c = xW c)−P(XV ∈ A)| = 0

for every set A and V ⊂⊂ Zd.
3 Here we used the suggestive notation P(X ∈ C|XW c = xW c) := γW (x,C) to emphasize the

significance of the mixing property. Note that P(X ∈ C|XW c) = γW (X,C) holds a.s. by the
definition of G (γ), but the equivalence between uniqueness and uniform mixing is false if a null set
is omitted in the supremum over x.

4 The notation limW aW denotes the limit of the net {aW }, where {W ⊂⊂ Zd} is directed by
inclusion.
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3. Extremality ⇔ mixing: the random field X is an extreme point of G (γ) iff

lim
W⊂⊂Zd

E|P(XV ∈ A|XW c)−P(XV ∈ A)| = 0

for every set A and V ⊂⊂ Zd.

The mixing property in Theorem 7.13 is a direct spatial analogue of the stability
property of a Markov chain introduced in Section 7.2. Indeed, a Markov chain is
stable if it forgets its initial condition after a long time: that is, the Markov chain
has a “finite memory.” Similarly, a random field is mixing if the distribution of
any finite set of sites V is insensitive to knowledge of the configuration of the field
outside a larger set W when the distance between V and W c is large. This implies
in particular that distant sites are nearly independent, that is, the field has “finite
correlation length.” The uniform mixing property is a strictly stronger notion, where
the forgetting property holds uniformly in the boundary configuration x∂W (recall
that by the Markov property of the random field, P(X ∈ C|XW c = xW c) depends on
x∂W only).

7.6.2 Conjecture on inheritance of decay of correlations

In the following, let us fix a specification γ and a Markov random field X = (Xv)v∈Zd
that is specified by γ. In order to investigate the conditional distributions of random
fields, we must introduce a suitable observation structure. To this end, in analogy
with Section 7.3, let us fix for each v ∈ Zd a transition kernel Φv from the state space
E of the random field to a measurable space F in which the observations take their
values. We now construct the observations Y = (Yv)v∈Zd such that

P(Y ∈ dy|X) =
∏

v∈Zd
Φv(Xv, dyv);

that is, each site of the underlying field is observed independently with P(Yv ∈
A|Xv) = Φv(Xv, A). The resulting model (Xv, Yv)v∈Zd is called a hidden Markov
random field.

Remark 7.14. For notational simplicity, we have formulated our model such that the
observations are attached to individual sites v ∈ Zd. One could also consider more
general models, for example, where an observation Y{v,w} is attached to every edge
{v, w} ⊂ Zd, ‖v − w‖ = 1 with P(Y{v,w} ∈ A|X) = Φ{v,w}(Xv, Xw, A) (cf. Example
7.17). The results of this section will continue to hold in this setting with minor
modifications.

We can now formulate the natural counterpart of the filter stability property in
hidden Markov random fields: the model is said to be conditionally mixing if the
conditional distribution of the underlying process in a finite set of sites given the
observations is insensitive to knowledge of the configuration of the field at distant
sites.
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Definition 7.15. The hidden Markov random field (Xv, Yv)v∈Zd is conditionally mix-
ing if

lim
W⊂⊂Zd

E|P(XV ∈ A|XW c , Y )−P(XV ∈ A|Y )| = 0

for every set A and V ⊂⊂ Zd.

The basic question to be addressed in this setting is therefore: when is the mixing
property inherited by conditioning, that is, when does the mixing property of the
random field X imply the conditional mixing property of (X, Y )?

It will be insightful to reformulate the problem in different terms. For simplicity,
we will assume in the sequel that the observations are locally nondegenerate, that is,
that Φv(xv, dyv) = gv(xv, yv)ϕ(dyv) for some positive density gv(xv, yv) > 0 for all
xv, yv.

Proposition 7.16. Define for every y ∈ F Zd and V ⊂⊂ Zd the transition kernel on
EZd

γyV (x,A) =

∫
1A(z)

∏
v∈V gv(zv, yv) γV (x, dz)∫ ∏

v∈V gv(zv, yv) γV (x, dz)
.

Then the following hold.

1. γy = (γyV )V⊂⊂Zd is a specification for every y ∈ Zd.

2. P(X ∈ · |Y ) is in G (γY ) a.s.

3. (X, Y ) is conditionally mixing iff P(X ∈ · |Y ) is extremal in G (γY ) a.s.

Proof. We begin by verifying that γy is a specification. To this end, let W ⊂ V ⊂⊂
Zd. As γV γW = γV and γW (fg) = g γWf if g(x) depends only on xW c , we can write

∫
1A(z)

∏

v∈V

gv(zv, yv) γV (x, dz)

=

∫
γyW (z′, A)

∫ ∏

w∈W

gw(zw, yw) γW (z′, dz)
∏

v∈V \W

gv(z
′
v, yv) γV (x, dz′)

=

∫
γyW (z, A)

∏

v∈V

gv(zv, yv) γV (x, dz).

Thus γyV γ
y
W = γyV , and the remaining properties of a specification hold trivially.

Next, we show that P(X ∈ · |Y ) is in G (γY ) a.s. To this end, let us fix any
regular version PY of the conditional distribution P( · |Y ). We must show that for
a.e. observation record y, we have Py(X ∈ A|XV c) = γyV (X,A) for all A, that is, we
must show that

Ey(γyV (X,A)1B) = Py({X ∈ A} ∩B) for every measurable A and B ∈ σ{XV c}

holds for P-a.e. y. Is easily seen by the definition of a hidden Markov random field
that

γYV (X,A) = P(X ∈ A|XV c , Y ).
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We therefore have

E(γYV (X,A)1B1C) = P({X ∈ A} ∩B ∩ C)

for every A and B ∈ σ{XV c}, C ∈ σ{Y }. It follows by disintegration that

EY (γYV (X,A)1B) = PY ({X ∈ A} ∩B)

holds P-a.s. for a fixed choice of A, B ∈ σ{XV c}, and thus simultaneously for a
countable family of sets A and B ∈ σ{XV c}. By choosing the countable family
to be a generating class (note that all our σ-fields are countably generated), the
above identity holds simultaneously for every A and B ∈ σ{XV c} by a monotone
class argument. As there are only countably many V ⊂⊂ Zd, we have proved that
P(X ∈ · |Y ) is in G (γY ) a.s.

Finally, we consider the conditional mixing property. As the limit in the definition
of (conditional) mixing is over a decreasing net (by Jensen’s inequality), it suffices
to consider the limit along any fixed cofinal increasing sequence Wn ⊂⊂ Zd. Thus
by the martingale convergence theorem, the conditional mixing property holds if and
only if

lim
n→∞

E( |P(X ∈ A|XW c
n
, Y )−P(X ∈ A|Y )| |Y ) = 0 a.s.

for every V ⊂⊂ Zd and A ∈ σ{XV }. As we have shown that P(X ∈ A|XW c
n
, Y ) =

γYWn
(X,A) = PY (X ∈ A|XW c

n
), the conditional mixing property is equivalent to

lim
n→∞

Ey|Py(X ∈ A|XW c
n
)−Py(X ∈ A)| = 0 for P-a.e. y

for every V ⊂⊂ Zd and A ∈ σ{XV }. But by the martingale convergence theorem

lim
n→∞

Ey|Py(X ∈ A|XW c
n
)−Py(X ∈ A)| = Ey|Py(X ∈ A|⋂nσ{XW c

n
})−Py(X ∈ A)|.

Thus we can again use a monotone class argument as above to remove the dependence
of the P-null set on V and A. Thus (Xv, Yv)v∈Zd is conditionally mixing if and only if

lim
W⊂⊂Zd

Ey|Py(X ∈ A|XW c)−Py(X ∈ A)| = 0 for every V ⊂⊂ Zd, A ∈ σ{XV }

holds for P-a.e. y, which is precisely the mixing property of P(X ∈ · |Y ).

Proposition 7.16 shows that the conditional distribution P(X ∈ · |Y ) defines again
a (random) Markov random field, and gives an explicit expression for its specification
γY . The inheritance of ergodicity can now be formulated in terms of the ergodic
properties of the conditional field. In particular, we can pose two natural questions:

1. If P(X ∈ · ) is extremal in G (γ), when is P(X ∈ · |Y ) extremal in G (γY ) a.s.?

2. If |G (γ)| = 1, when is |G (γY )| = 1 a.s.?
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The first question is evidently the direct spatial analogue of the filter stability prob-
lem: when is the mixing property inherited by the conditional distribution? The
second question is analogous, but for the uniform mixing property. It is evident from
Theorem 7.13 that |G (γY )| = 1 a.s. implies the conditional mixing property. The
stronger conclusion |G (γY )| = 1 a.s. is perhaps less natural from the point of view of
conditional distributions, but is of practical relevance in its own right as it is closely
connected with the computational complexity of MCMC methods for Bayesian image
analysis [26].

As in the filter stability problem, local nondegeneracy of the observations does
not suffice to obtain an affirmative answer to either of the above questions. In fact,
we have a direct analogue of the example given in Section 7.4.

Example 7.17 (Inheritance of decay of correlations, phase transition). Let E =
F = {−1, 1}, and define the random field (Xv)v∈Z2 such that Xv are i.i.d. symmetric
Bernoulli random variables. It is evident that this model is uniformly mixing in the
most trivial sense (thus uniqueness and extremality both hold).

We now attach an observation Y{v,w} to each edge {v, w} ⊂ Zd, ‖v − w‖ = 1 by
setting Y{v,w} = XvXwξ{v,w} with ξ{v,w} i.i.d. and independent of X with P(ξ{v,w} =
−1) = p. In this manner, we evidently obtain a direct counterpart of the model of
Section 7.4. While the observations in this model are defined on the edges rather than
on the vertices as we have done in this section, a result that is entirely analogous to
Proposition 7.16 holds in this setting (see also Remark 7.14 above and Remark 7.18
below).

We can now proceed identically as in the proof of Theorem 7.7 to show that there
exists 0 < p? < 1/2 such that the hidden Markov random field (X, Y ) fails to be
conditionally mixing for p < p?. In fact, this is precisely the idea behind the proof of
Theorem 7.7 in the first place: the model (Xv

k , Y
v
k )k,v∈Z is considered as a space-time

random field, and the problem is addressed using classical methods from statistical
mechanics.

The present example could be considered as a toy model in image analysis. The
underlying field X represents a grid of black or white pixels of an image, and the
observations Y correspond to noisy measurements of the gradient of the image at
each point. Thus we see that the ability to reconstruct the image based on the noisy
gradient information undergoes a phase transition at a positive signal-to-noise ratio.

Remark 7.18. The use of edge observations in Example 7.17 is merely cosmetic:
the same example can be reformulated in terms of vertex observations. Indeed, let us
define the random field (X̃v, Ỹv)v∈Zd with X̃v ∈ {−1, 1}3 and Ỹv ∈ {−1, 1}2 by setting
X̃v = (Xv, Xv+(0,1), Xv+(1,0)) and Ỹv = (XvXv+(0,1)ξ{v,v+(0,1)}, XvXv+(1,0)ξ{v,v+(1,0)}),

where Xv and ξ{v,w} are as in Example 7.17. Then X̃ is still a uniformly mixing

Markov random field, the observations Ỹ are locally nondegenerate, and P(X̃1 ∈
· |Ỹ ) = P(X ∈ · |Y ). In particular, the above conditional phase transition arises
identically in this formulation.

In view of the above, the inheritance of mixing properties of random fields under
conditioning cannot be taken for granted. Just as in the filter stability problem,
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however, it is natural to expect that conditional mixing will hold in the absence of
observation symmetries. Such a conjecture is often implicit in work on Bayesian
image analysis (cf. [26, p. 6]). For example, we can formulate the natural analogue
of Conjecture 7.9.

Conjecture 7.19. Let (Xv, Yv)v∈Z2 be a hidden Markov field with E = F = {−1, 1}
and

Yv = Xvξv, (ξv)v∈Z2 are i.i.d. ⊥⊥ X with P(ξv = −1) = p.

If the underlying random field X is mixing, then the model is conditionally mixing.

We do not know how to prove such a conjecture in a general setting. However, in
[42] we establish the validity of such a result under monotonicity assumptions on the
underlying field. This provides an entirely different mechanism for the inheritance of
ergodicity than the observability theory.
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Appendix A

Block particle filter: proofs

The goal of this appendix is to prove Theorem 4.2. We refer to Section 4.5 for an
overview of the main ideas in the proof that we are going to present.

Theorem 4.2 yields a bound on |||πµn − π̂µn|||J . As

|||πµn − π̂µn|||J ≤ |||πµn − π̃µn|||J︸ ︷︷ ︸
bias

+ |||π̃µn − π̂µn|||J︸ ︷︷ ︸
variance

it suffices to bound each term in this inequality. As was explained in Section 4.5.1,
the first term quantifies the bias of the block particle filter, while the second term
quantifies the variance of the random sampling. The bias term will be bounded in
Theorem A.12 below, while the variance will be bounded in Theorem A.21. The
combination of these two results immediately yields Theorem 4.2.

The Dobrushin comparison method, as discussed in Section 4.5.2, is the main
workhorse of our proof. To use this method, we must be able to bound the quantities
Cij, bj, and Dij that appear in the Dobrushin comparison theorem (Theorem 2.11).
We have already introduced in Section 2.3 and Section 2.4 some elementary lemmas
for this purpose. We also need the following lemma to bounds Cij.

Lemma A.1 (Minorization condition). Let ν, ν ′, γ, γ′ be probability measures on a
measurable space (E,E), and let ε > 0 be such that ν(A) ≥ εγ(A) and ν ′(A) ≥ εγ′(A)
for every measurable set A. Then

|||ν − ν ′||| ≤ 2(1− ε) + ε|||γ − γ′|||.

In particular, if γ = γ′, then |||ν − ν ′||| ≤ 2(1 − ε). The same conclusion holds if the
||| · |||-norm is replaced by the ‖ · ‖-norm.

Proof. As µ = (1− ε)−1(ν− εγ) and µ′ = (1− ε)−1(ν ′− εγ′) are probability measures
and ν − ν ′ = (1− ε)(µ− µ′) + ε(γ − γ′), the result follows readily.
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A.1 Local stability of the filter

The main goal of this section is to prove a local stability bound for the nonlinear filter.
We begin, however, by introducing a number of objects that will appear several times
in the sequel.

For any probability measure µ on X and x, z ∈ X, v ∈ V , we define

µvx,z(A) := Pµ(Xv
0 ∈ A|XV \{v}

0 = xV \{v}, X1 = z)

=

∫
1A(xv)

∏
w∈N(v) p

w(x, zw)µvx(dx
v)∫ ∏

w∈N(v) p
w(x, zw)µvx(dx

v)

(recall the notation µvx := Pµ(Xv
0 ∈ · |XV \{v}

0 = xV \{v}) in Section 4.5.2). Let

Cµ
vv′ :=

1

2
sup
z∈X

sup
x,x̃∈X:xV \{v′}=x̃V \{v′}

‖µvx,z − µvx̃,z‖

for v, v′ ∈ V . The quantity

Corr(µ, β) := max
v∈V

∑

v′∈V

eβd(v,v′)Cµ
vv′

could be viewed as a measure of the degree of correlation decay of the measure µ
at rate β > 0. It will turn out that this (not entirely obvious) measure of decay
of correlations is precisely tuned to the needs of the proof of Theorem 4.2. This is
due to the fact that the measures µvx,z arise naturally when applying the Dobrushin
comparison method to the smoothing distributions as discussed in Section 4.5.2.

Proposition A.2 (Local filter stability). Suppose there exists ε > 0 such that

ε ≤ pv(x, zv) ≤ ε−1 for all v ∈ V, x, z ∈ X.

Let µ, ν be probability measures on X, and suppose that

Corr(µ, β) + 3(1− ε2∆)e2βr∆2 ≤ 1

2

for a sufficiently small constant β > 0. Then we have

‖Fn · · · Fs+1µ− Fn · · · Fs+1ν‖J
≤ 2e−β(n−s)

∑

v∈J

max
v′∈V

e−βd(v,v′) sup
x,z∈X

‖µv′x,z − νv
′

x,z‖

for every J ⊆ V and s < n.

Remark A.3. There is nothing magical about the constant 1/2 in the decay of cor-
relations assumption; any constant c < 1 would work at the expense of a constant
1/(1− c) rather than 2 in the filter stability bound. As our methods are not expected
to yield tight quantitative bounds, we have taken the liberty to fix various constants of
this sort throughout the following sections for aesthetic purposes.
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Remark A.4. Note that by Lemma 2.9

‖µv′x,z − νv
′

x,z‖ ≤
2

ε2∆
‖µv′x − νv

′

x ‖.

This yields a slightly cleaner bound in Proposition A.2 with a worse constant. For
our purposes, however, it will be just as easy to bound ‖µv′x,z − νv

′
x,z‖ directly.

Proof. Define the smoothing distributions

ρ = Pµ(X0, . . . , Xn ∈ · |Y1, . . . , Yn),

ρ̃ = Pν(X0, . . . , Xn ∈ · |Y1, . . . , Yn).

We will apply Theorem 2.11 to ρ, ρ̃ with I = {0, . . . , n}×V and S = Xn+1 as discussed
in 4.5.2. To this end, we must bound the quantities Cij and bj. We begin by bounding
Cij with i = (k, v) and j = (k′, v′). We distinguish three cases.

Case k = 0. The key observation in this case is that ρix = µvx0,x1
by the Markov

property (or by direct computation). Note that as cardN(v) ≤ ∆, we have

µvx,z(A) =

∫
1A(xv)

∏
w∈N(v) p

w(x, zw)µvx(dx
v)∫ ∏

w∈N(v) p
w(x, zw)µvx(dx

v)
≥ ε2∆ µvx(A),

so ‖µvx,z − µvx,z′‖ ≤ 2(1− ε2∆) for any z, z′ ∈ X by Lemma A.1. Therefore

Cij ≤





Cµ
vv′ if k′ = 0,

1− ε2∆ if k′ = 1 and v′ ∈ N(v),

0 otherwise.

This evidently implies that

∑

(k′,v′)∈I

eβk
′
eβd(v,v′)C(0,v)(k′,v′) ≤ Corr(µ, β) + (1− ε2∆)eβ(r+1)∆.

Case 0 < k < n. Now we have (cf. Section 4.5.2)

ρix(A) =

∫
1A(xvk) p

v(xk−1, x
v
k) g

v(xvk, Y
v
k )
∏

w∈N(v) p
w(xk, x

w
k+1)ψv(dxvk)∫

pv(xk−1, xvk) g
v(xvk, Y

v
k )
∏

w∈N(v) p
w(xk, xwk+1)ψv(dxvk)

.

By inspection, ρix does not depend on xv
′

k′ except in the following cases: k′ = k − 1
and v′ ∈ N(v); k′ = k + 1 and v′ ∈ N(v); k′ = k and v′ ∈ ⋃w∈N(v) N(w). As

ρix(A) ≥ ε2∆

∫
1A(xvk) p

v(xk−1, x
v
k) g

v(xvk, Y
v
k )ψv(dxvk)∫

pv(xk−1, xvk) g
v(xvk, Y

v
k )ψv(dxvk)

as well as

ρix(A) ≥ ε2

∫
1A(xvk) g

v(xvk, Y
v
k )
∏

w∈N(v) p
w(xk, x

w
k+1)ψv(dxvk)∫

gv(xvk, Y
v
k )
∏

w∈N(v) p
w(xk, xwk+1)ψv(dxvk)

,
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we can use Lemma A.1 to estimate

Cij ≤





1− ε2 if k′ = k − 1 and v′ ∈ N(v),

1− ε2∆ if k′ = k + 1 and v′ ∈ N(v),

1− ε2∆ if k′ = k and v′ ∈ ⋃w∈N(v) N(w),

0 otherwise.

This yields

∑

(k′,v′)∈I

eβ|k−k
′|eβd(v,v′)C(k,v)(k′,v′) ≤ (1− ε2∆){e2βr∆2 + 2eβ(r+1)∆}

≤ 3(1− ε2∆)e2βr∆2,

where we have used that r ≥ 1 and ∆ ≥ 1 in the last inequality.
Case k = n. Now we have

ρix(A) =

∫
1A(xvn) pv(xn−1, x

v
n) gv(xvn, Y

v
n )ψv(dxvn)∫

pv(xn−1, xvn) gv(xvn, Y
v
n )ψv(dxvn)

≥ ε2

∫
1A(xvn) gv(xvn, Y

v
n )ψv(dxvn)∫

gv(xvn, Y
v
n )ψv(dxvn)

,

and we obtain precisely as above

Cij ≤
{

1− ε2 if k′ = n− 1 and v′ ∈ N(v),

0 otherwise.

We therefore find
∑

(k′,v′)∈I

eβ|k−k
′|eβd(v,v′)C(n,v)(k′,v′) ≤ (1− ε2)eβ(r+1)∆.

Combining the above three cases and the assumption of the Proposition yields

max
(k,v)∈I

∑

(k′,v′)∈I

eβ{|k−k
′|+d(v,v′)}C(k,v)(k′,v′) ≤

1

2
.

Thus Lemma 2.13 gives

max
(k,v)∈I

∑

(k′,v′)∈I

eβ{|k−k
′|+d(v,v′)}D(k,v)(k′,v′) ≤ 2.

Now consider the quantities bj in Theorem 2.11. By the Markov property, it is evident
that ρix = ρ̃ix whenever i = (k, v) with k ≥ 1. On the other hand, for k = 0 we obtain
ρix = µvx0,x1

and ρ̃ix = νvx0,x1
. Applying Theorem 2.11 therefore yields

‖πµn − πνn‖J = ‖ρ− ρ̃‖{n}×J ≤
∑

v∈J

∑

v′∈V

D(n,v)(0,v′) sup
x,z∈X

‖µv′x,z − νv
′

x,z‖.
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However, note that
∑

v′∈V

D(n,v)(0,v′) sup
x,z∈X

‖µv′x,z − νv
′

x,z‖

= e−βn
∑

v′∈V

eβ{n+d(v,v′)}D(n,v)(0,v′) e
−βd(v,v′) sup

x,z∈X
‖µv′x,z − νv

′

x,z‖

≤ 2e−βn max
v′∈V

e−βd(v,v′) sup
x,z∈X

‖µv′x,z − νv
′

x,z‖,

using the above estimate on the matrix D. Substituting this into the bound for
‖πµn − πνn‖J yields the statement of the Proposition for the special case s = 0.

To obtain the result for any s < n, note that Fn · · · Fs+1µ and πµn−s differ only in
that a different sequence of observations (Ys+1, . . . , Yn versus Y1, . . . , Yn−s) is used in
the computation of these quantities. As our bound holds uniformly in the observation
sequence, however, the general result follows immediately.

As a corollary of Proposition A.2, let us derive a simple filter stability statement
that illustrates the role of decay of correlations (this will not be used elsewhere).

Corollary A.5 (Filter stability). Suppose there exists ε > 0 such that

ε ≤ pv(x, zv) ≤ ε−1 for all v ∈ V, x, z ∈ X,

and such that

ε > ε0 =

(
1− 1

6∆2

)1/2∆

.

Then for any probability measures µ, ν on X and J ⊆ V , n ≥ 0, we have

‖πµn − πνn‖J ≤ 4 card J γn/2r,

where γ = 6∆2(1− ε2∆) < 1.

Proof. We first apply Proposition A.2 with µ = δx. Then Corr(µ, β) = 0 for any
β > 0. Choosing β = −(2r)−1 log γ > 0, we find that

Corr(µ, β) + 3(1− ε2∆)e2βr∆2 =
1

2
,

so that the assumption of Proposition A.2 is satisfied. Therefore,

‖πxn − πνn‖J ≤ 4 card J e−βn = 4 card J γn/2r.

To obtain the result for arbitrary µ, note that

πµn(A) = Pµ(Xn ∈ A|Y1, . . . , Yn)

= Eµ(Pµ(Xn ∈ A|X0, Y1, . . . , Yn)|Y1, . . . , Yn)

= Eµ(π
δX0
n (A)|Y1, . . . , Yn).

Therefore, by Jensen’s inequality,

‖πµn − πνn‖J ≤ Eµ(‖πδX0
n − πνn‖J |Y1, . . . , Yn) ≤ sup

x∈X
‖πxn − πνn‖J ,

which yields the result.
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While Proposition A.2 requires a decay of correlations assumption on the initial
condition (Corr(µ, β) must be sufficiently small), Corollary A.5 works for any initial
condition provided that ε > ε0 is sufficiently large (which is necessary in general, see
Section 4.4.1). Thus no assumption is needed on the initial condition if we want to
show only that the filter is stable in time. On the other hand, Proposition A.2 controls
not only the stability in time, but also the spatial accumulation of error between µ
and ν by virtue of the damping factor e−βd(v,v′): the decay of correlations property of
the initial condition is essential to obtain this type of local control. The latter is of
central importance if we wish to obtain local error bounds for filter approximations
that are uniform in time and in the model dimension.

A.2 The block projection error

The proof of a time-uniform error bound between πµn and π̃µn requires two ingredients:
we need the filter stability property of πµn, developed in the previous section, in order
to mitigate the accumulation of approximation errors over time; and we need to
control the approximation error between πµn and π̃µn in one time step. The latter is
the purpose of this section.

We will in fact consider two separate cases. To control the total error ‖πµn− π̃µn‖J ,
we need to consider the one-step error made in each time step s = 1, . . . , n. For time
steps s < n (for which the error is dissipated by the stability of the filter), the error
must be measured in terms of the quantities that appear in Proposition A.2: that
is, we must control ‖(Fsν)vx,z − (F̃sν)vx,z‖. On the other hand, in the last time step

s = n, we must control directly ‖Fnν − F̃nν‖J . While the proofs of these cases are
quite similar, each much be considered separately in the following.

We begin by bounding the error in time steps s < n.

Proposition A.6 (Block error, s < n). Suppose there exists ε > 0 such that

ε ≤ pv(x, zv) ≤ ε−1 for all v ∈ V, x, z ∈ X.

Let ν be a probability measure on X, and suppose that

Corr(ν, β) + (1− ε2)eβ(r+1)∆ ≤ 1

2

for a sufficiently small constant β > 0. Then we have

sup
x,z∈X

‖(Fsν)vx,z − (F̃sν)vx,z‖ ≤ 4e−β(1− ε2∆) e−βd(v,∂K)

for every s ∈ N, K ∈ K and v ∈ K.

This result makes precise the idea that was heuristically expressed in Section 4.3:
if the measure ν possesses the decay of correlations property, then the error at site v
incurred by applying the block filter rather than the true filter decays exponentially
in the distance between v and the boundary of the block that it is in.
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Proof. We begin by writing out the definitions

(Fsν)(A) =

∫
1A(x)

∏
w∈V p

w(x0, x
w) gw(xw, Y w

s ) ν(dx0)ψ(dx)∫ ∏
w∈V p

w(x0, xw) gw(xw, Y w
s ) ν(dx0)ψ(dx)

,

(F̃sν)(A) =

∫
1A(x)

∏
K′∈K

[ ∫ ∏
w∈K′ p

w(x0, x
w) gw(xw, Y w

s ) ν(dx0)
]
ψ(dx)∫ ∏

K′∈K
[ ∫ ∏

w∈K′ p
w(x0, xw) gw(xw, Y w

s ) ν(dx0)
]
ψ(dx)

.

Let us fix K ∈ K, v ∈ K throughout the proof. Then

(Fsν)vx(A) =

∫
1A(xv) gv(xv, Y v

s )
∏

w∈V p
w(x0, x

w) ν(dx0)ψv(dxv)∫
gv(xv, Y v

s )
∏

w∈V p
w(x0, xw) ν(dx0)ψv(dxv)

,

(F̃sν)vx(A) =

∫
1A(xv) gv(xv, Y v

s )
∏

w∈K p
w(x0, x

w) ν(dx0)ψv(dxv)∫
gv(xv, Y v

s )
∏

w∈K p
w(x0, xw) ν(dx0)ψv(dxv)

.

Define I = ({0} × V ) ∪ (1, v) and S = X× Xv, and the probability measures on S

ρ(A) =∫
1A(x0, x

v) gv(xv, Y v
s )
∏

w∈V p
w(x0, x

w)
∏

u∈N(v) p
u(x, zu) ν(dx0)ψv(dxv)∫

gv(xv, Y v
s )
∏

w∈V p
w(x0, xw)

∏
u∈N(v) p

u(x, zu) ν(dx0)ψv(dxv)
,

ρ̃(A) =∫
1A(x0, x

v) gv(xv, Y v
s )
∏

w∈K p
w(x0, x

w)
∏

u∈N(v) p
u(x, zu) ν(dx0)ψv(dxv)∫

gv(xv, Y v
s )
∏

w∈K p
w(x0, xw)

∏
u∈N(v) p

u(x, zu) ν(dx0)ψv(dxv)
.

Then we have by construction

‖(Fsν)vx,z − (F̃sν)vx,z‖ = ‖ρ− ρ̃‖(1,v).

We will apply Theorem 2.11 to bound ‖ρ − ρ̃‖(1,v). To this end, we must bound Cij
and bi with i = (k′, v′) and j = (k′′, v′′). We distinguish two cases.

Case k′ = 0. In this case we have

ρi(x0,xv)(A) =

∫
1A(xv

′
0 )
∏

w∈N(v′) p
w(x0, x

w) νv
′
x0

(dxv
′

0 )∫ ∏
w∈N(v′) p

w(x0, xw) νv′x0
(dxv

′
0 )

,

ρ̃i(x0,xv)(A) =

∫
1A(xv

′
0 )
∏

w∈N(v′)∩K p
w(x0, x

w) νv
′
x0

(dxv
′

0 )∫ ∏
w∈N(v′)∩K p

w(x0, xw) νv′x0
(dxv

′
0 )

.

In particular, ρi(x0,xv) = νv
′
x0,x

, so Cij ≤ Cν
v′v′′ if k′′ = 0. Moreover, as

ρi(x0,xv)(A) ≥ ε2

∫
1A(xv

′
0 )
∏

w∈N(v′)\{v} p
w(x0, x

w) νv
′
x0

(dxv
′

0 )∫ ∏
w∈N(v′)\{v} p

w(x0, xw) νv′x0
(dxv

′
0 )

,

we have Cij ≤ 1− ε2 if k′′ = 1 (so v′′ = v) and v ∈ N(v′) by Lemma A.1, and Cij = 0
otherwise. We therefore immediately obtain the estimate

∑

(k′′,v′′)∈I

eβk
′′
eβd(v′,v′′)C(0,v′)(k′′,v′′) ≤ Corr(ν, β) + (1− ε2)eβ(r+1).
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On the other hand, note that ρi(x0,xv) = ρ̃i(x0,xv) if N(v′) ⊆ K, and that we have

ρi(x0,xv) ≥ ε2∆νv
′
x0

and ρ̃i(x0,xv) ≥ ε2∆νv
′
x0

. Therefore, by Lemma A.1

bi = sup
(x0,xv)∈S

‖ρi(x0,xv) − ρ̃i(x0,xv)‖ ≤
{

0 for v′ ∈ K\∂K,
2(1− ε2∆) otherwise.

Case k′ = 1. In this case we have

ρi(x0,xv)(A) = ρ̃i(x0,xv)(A) =∫
1A(xv) gv(xv, Y v

s ) pv(x0, x
v)
∏

u∈N(v) p
u(x, zu)ψv(dxv)∫

gv(xv, Y v
s ) pv(x0, xv)

∏
u∈N(v) p

u(x, zu)ψv(dxv)
.

Thus bi = 0, and estimating as above we obtain Cij ≤ 1 − ε2 whenever k′′ = 0 and
v′′ ∈ N(v), and Cij = 0 otherwise. In particular, we obtain

∑

(k′′,v′′)∈I

eβ|1−k
′′|eβd(v,v′′)C(1,v)(k′′,v′′) ≤ (1− ε2)eβ(r+1)∆.

Combining the above two cases and the assumption of the Proposition yields

max
(k′,v′)∈I

∑

(k′′,v′′)∈I

eβ{|k
′−k′′|+d(v′,v′′)}C(k′,v′)(k′′,v′′) ≤

1

2
.

Applying Theorem 2.11 and Lemma 2.13 gives

‖(Fsν)vx,z − (F̃sν)vx,z‖ = ‖ρ− ρ̃‖(1,v)

≤ 2(1− ε2∆)
∑

v′∈V \(K\∂K)

D(1,v)(0,v′)

≤ 4e−β(1− ε2∆)e−βd(v,∂K).

As the choice of x, z ∈ X was arbitrary, the proof is complete.

We now use a similar argument to bound the error in time step n.

Proposition A.7 (Block error, s = n). Suppose there exists ε > 0 such that

ε ≤ pv(x, zv) ≤ ε−1 for all v ∈ V, x, z ∈ X.

Let ν be a probability measure on X, and suppose that

Corr(ν, β) + (1− ε2)eβ(r+1)∆ ≤ 1

2

for a sufficiently small constant β > 0. Then we have

‖Fnν − F̃nν‖J ≤ 4e−β(1− ε2∆) e−βd(J,∂K) card J

for every K ∈ K and J ⊆ K.
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Proof. Define I = {0, 1} × V and S = X2. Fix K ∈ K, and let

ρ(A) =

∫
1A(x0, x1)

∏
v∈V p

v(x0, x
v
1) gv(xv1, Y

v
n ) ν(dx0)ψ(dx1)∫ ∏

v∈V p
v(x0, xv1) gv(xv1, Y

v
n ) ν(dx0)ψ(dx1)

,

ρ̃(A) =

∫
1A(x0, x1)

∏
v∈K p

v(x0, x
v
1)
∏

w∈V g
w(xw1 , Y

w
n ) ν(dx0)ψ(dx1)∫ ∏

v∈K p
v(x0, xv1)

∏
w∈V g

w(xw1 , Y
w
n ) ν(dx0)ψ(dx1)

.

Then for any J ⊆ K, we have

‖Fnν − F̃nν‖J = ‖ρ− ρ̃‖{1}×J .

We will apply Theorem 2.11 to bound ‖ρ− ρ̃‖{1}×J . To this end, we must bound Cij
and bi with i = (k, v) and j = (k′, v′). We distinguish two cases.

Case k = 0. In this case we have

ρix(A) =

∫
1A(xv0)

∏
w∈N(v) p

w(x0, x
w
1 ) νvx0

(dxv0)∫ ∏
w∈N(v) p

w(x0, xw1 ) νvx0
(dxv0)

,

ρ̃ix(A) =

∫
1A(xv0)

∏
w∈N(v)∩K p

w(x0, x
w
1 ) νvx0

(dxv0)∫ ∏
w∈N(v)∩K p

w(x0, xw1 ) νvx0
(dxv0)

.

In particular, ρix = νvx0,x1
, so Cij ≤ Cν

vv′ if k′ = 0. Moreover, as

ρix(A) ≥ ε2

∫
1A(xv0)

∏
w∈N(v)\{v′} p

w(x0, x
w
1 ) νvx0

(dxv0)∫ ∏
w∈N(v)\{v′} p

w(x0, xw1 ) νvx0
(dxv0)

,

we have Cij ≤ 1− ε2 if k′ = 1 and v′ ∈ N(v) by Lemma A.1, and Cij = 0 otherwise.
We therefore immediately obtain the estimate

∑

(k′,v′)∈I

eβk
′
eβd(v,v′)C(0,v)(k′,v′) ≤ Corr(ν, β) + (1− ε2)eβ(r+1)∆.

On the other hand, note that ρix = ρ̃ix if N(v) ⊆ K, and that we have ρix ≥ ε2∆νvx0

and ρ̃ix ≥ ε2∆νvx0
. Therefore, we obtain by Lemma A.1

bi = sup
x∈S
‖ρix − ρ̃ix‖ ≤

{
0 for v ∈ K\∂K,
2(1− ε2∆) otherwise.

Case k = 1. In this case we have

ρix(A) =

∫
1A(xv1) pv(x0, x

v
1) gv(xv1, Y

v
n )ψv(dxv1)∫

pv(x0, xv1) gv(xv1, Y
v
n )ψv(dxv1)

,

while ρ̃xi = ρxi if v ∈ K and

ρ̃ix(A) =

∫
1A(xv1) gv(xv1, Y

v
n )ψv(dxv1)∫

gv(xv1, Y
v
n )ψv(dxv1)

,
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otherwise. Thus we obtain from Lemma A.1

bi = sup
x∈S
‖ρix − ρ̃ix‖ ≤

{
0 for v ∈ K,
2(1− ε2) otherwise.

On the other hand, we can readily estimate as above
∑

(k′,v′)∈I

eβ|1−k
′|eβd(v,v′)C(1,v)(k′,v′) ≤ (1− ε2)eβ(r+1)∆.

Combining the above two cases and the assumption of the Proposition yields

max
(k,v)∈I

∑

(k′,v′)∈I

eβ{|k−k
′|+d(v,v′)}C(k,v)(k′,v′) ≤

1

2
.

Applying Theorem 2.11 and Lemma 2.13 gives

‖Fnν − F̃nν‖J = ‖ρ− ρ̃‖{1}×J

≤ 2(1− ε2∆)
∑

v∈J

{ ∑

v′∈(V \K)∪∂K

D(1,v)(0,v′) +
∑

v′∈V \K

D(1,v)(1,v′)

}

≤ 4e−β(1− ε2∆)e−βd(J,∂K) card J

for every J ⊆ K.

A.3 Decay of correlations of the block filter

To idea behind the block filter π̃µn is that the error should decay exponentially in the
block size by virtue of the decay of correlations property. While we have developed
above the two ingredients (filter stability and one-step error bound) required to obtain
a time-uniform error bound between πµn and π̃µn, we have done this by imposing the
decay of correlations property as an assumption. Thus perhaps the crucial point
remains to be proved: we must show that decay of correlations does indeed hold,
that is, that Corr(π̃µn, β) can be controlled uniformly in time. This is the goal of the
present section.

Unfortunately, Corr(π̃µn, β) is not straightforward to control directly. We therefore
introduce an alternative measure of correlation decay that will be easier to control.
For any probability measure µ on X and x, z ∈ X, v ∈ V , K ∈ K, let

µv,Kx,z (A) := Pµ(Xv
0 ∈ A|XV \{v}

0 = xV \{v}, XK
1 = zK)

=

∫
1A(xv)

∏
w∈N(v)∩K p

w(x, zw)µvx(dx
v)∫ ∏

w∈N(v)∩K p
w(x, zw)µvx(dx

v)
.

We now define

C̃µ
vv′ :=

1

2
max
K∈K

sup
z∈X

sup
x,x̃∈X:xV \{v′}=x̃V \{v′}

‖µv,Kx,z − µv,Kx̃,z ‖
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for v, v′ ∈ V . The quantity

C̃orr(µ, β) := max
v∈V

∑

v′∈V

eβd(v,v′)C̃µ
vv′

is a measure of correlation decay that is well adapted to the block filter. In order for
this quantity to be useful, we must first show that it controls Corr(µ, β).

Lemma A.8. For any probability measure µ and β > 0, we have

Corr(µ, β) ≤ (1− ε2∆)e2βr∆2 + 2ε−2∆ C̃orr(µ, β).

Proof. By definition

µvx,z(A) =

∫
1A(xv)

∏
w∈N(v)\K p

w(x, zw)µv,Kx,z (dxv)
∫ ∏

w∈N(v)\K p
w(x, zw)µv,Kx,z (dxv)

.

Let x, x̃ ∈ X be such that xV \{v
′} = x̃V \{v

′}. If v′ 6∈ ⋃w∈N(v) N(w), then

‖µvx,z − µvx̃,z‖ ≤ 2ε−2∆‖µv,Kx,z − µv,Kx̃,z ‖
by Lemma 2.9. On the other hand, note that

µvx,z(A) ≥ ε2∆µv,Kx,z (A), µvx̃,z(A) ≥ ε2∆µv,Kx̃,z (A).

We can therefore estimate using Lemma A.1 for v′ ∈ ⋃w∈N(v) N(w)

‖µvx,z − µvx̃,z‖ ≤ 2(1− ε2∆) + ε2∆‖µv,Kx,z − µv,Kx̃,z ‖.
Thus we obtain

Corr(µ, β) ≤ (1− ε2∆) max
v∈V

∑

v′∈
⋃
w∈N(v) N(w)

eβd(v,v′) + 2ε−2∆ C̃orr(µ, β)

≤ (1− ε2∆)e2βr∆2 + 2ε−2∆ C̃orr(µ, β).

As µ and β were arbitrary, the proof is complete.

We now aim to establish a time-uniform bound on C̃orr(π̃µn, β). To this end, we
first prove a one-step bound which will subsequently be iterated.

Proposition A.9. Suppose there exists ε > 0 such that

ε ≤ pv(x, zv) ≤ ε−1 for all v ∈ V, x, z ∈ X.

Let ν be a probability measure on X, and suppose that

C̃orr(ν, β) + (1− ε2)eβ(r+1)∆ ≤ 1

2

for a sufficiently small constant β > 0. Then we have

C̃orr(F̃sν, β) ≤ 2(1− ε2∆)e2βr∆2

for any s ∈ N.
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Proof. Let K,K ′ ∈ K, v ∈ K, v′ ∈ V (v′ 6= v), and let z, x, x̃ ∈ X such that
xV \{v

′} = x̃V \{v
′}. These choices will be fixed until further notice.

Define I = ({0} × V ) ∪ (1, v) and S = X× Xv, and let

ρ(A) =∫
A
gv(xv, Y v

s )
∏

w∈K p
w(x0, x

w)
∏

u∈N(v)∩K′ p
u(x, zu) ν(dx0)ψv(dxv)∫

gv(xv, Y v
s )
∏

w∈K p
w(x0, xw)

∏
u∈N(v)∩K′ p

u(x, zu) ν(dx0)ψv(dxv)
,

ρ̃(A) =∫
A
gv(x̃v, Y v

s )
∏

w∈K p
w(x0, x̃

w)
∏

u∈N(v)∩K′ p
u(x̃, zu) ν(dx0)ψv(dx̃v)∫

gv(x̃v, Y v
s )
∏

w∈K p
w(x0, x̃w)

∏
u∈N(v)∩K′ p

u(x̃, zu) ν(dx0)ψv(dx̃v)
,

Then we have by construction

‖(F̃sν)v,K
′

x,z − (F̃sν)v,K
′

x̃,z ‖ = ‖ρ− ρ̃‖(1,v).

We will apply Theorem 2.11 to bound ‖ρ − ρ̃‖(1,v). To this end, we must bound Cij
and bi with i = (k, t) and j = (k′, t′). We distinguish two cases.

Case k = 0. In this case we have

ρi(x0,xv)(A) =

∫
1A(xt0)

∏
w∈N(t)∩K p

w(x0, x
w) νtx0

(dxt0)∫ ∏
w∈N(t)∩K p

w(x0, xw) νtx0
(dxt0)

,

ρ̃i(x0,x̃v)(A) =

∫
1A(xt0)

∏
w∈N(t)∩K p

w(x0, x̃
w) νtx0

(dxt0)∫ ∏
w∈N(t)∩K p

w(x0, x̃w) νtx0
(dxt0)

.

Note that ρi(x0,xv) = νt,Kx0,x
. We therefore have Cij ≤ C̃ν

tt′ when k′ = 0. Moreover,

ρi(x0,xv)(A) ≥ ε2

∫
1A(xt0)

∏
w∈N(t)∩(K\{v}) p

w(x0, x
w) νtx0

(dxt0)∫ ∏
w∈N(t)∩(K\{v}) p

w(x0, xw) νtx0
(dxt0)

implies Cij ≤ 1 − ε2 if k′ = 1 and v ∈ N(t) by Lemma A.1, and Cij = 0 otherwise.
On the other hand, note that as xV \{v

′} = x̃V \{v
′} we have ρi(x0,xv) = ρ̃i(x0,xv) if v′ 6∈

N(t) ∩K, while both ρi(x0,xv)(A) and ρ̃i(x0,xv)(A) dominate

ε2

∫
1A(xt0)

∏
w∈N(t)∩(K\{v′}) p

w(x0, x
w) νtx0

(dxt0)∫ ∏
w∈N(t)∩(K\{v′}) p

w(x0, xw) νtx0
(dxt0)

.

Therefore, by Lemma A.1

b(0,t) ≤
{

0 for v′ 6∈ N(t) ∩K,
2(1− ε2) otherwise.

Case k = 1. In this case we have

ρi(x0,xv)(A) =

∫
1A(xv) gv(xv, Y v

s ) pv(x0, x
v)
∏

u∈N(v)∩K′ p
u(x, zu)ψv(dxv)∫

gv(xv, Y v
s ) pv(x0, xv)

∏
u∈N(v)∩K′ p

u(x, zu)ψv(dxv)
,

ρ̃i(x0,x̃v)(A) =

∫
1A(x̃v) gv(x̃v, Y v

s ) pv(x0, x̃
v)
∏

u∈N(v)∩K′ p
u(x̃, zu)ψv(dx̃v)∫

gv(x̃v, Y v
s ) pv(x0, x̃v)

∏
u∈N(v)∩K′ p

u(x̃, zu)ψv(dx̃v)
.
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Estimating as above, we obtain Cij ≤ 1 − ε2 whenever k′ = 0 and t′ ∈ N(v), and
Cij = 0 otherwise. Similarly, arguing again as above, we obtain

b(1,v) ≤
{

0 for v′ 6∈ ⋃w∈N(v)∩K′ N(w),

2(1− ε2∆) otherwise.

Define the matrix {Cij(v)}i,j∈I with the following entries:

C(0,t)(0,t′)(v) = C̃ν
tt′ ,

C(0,t)(1,v)(v) = C(1,v)(0,t)(v) = (1− ε2)1t∈N(v),

C(1,v)(1,v)(v) = 0.

Combining the above two cases yields Cij ≤ Cij(v), and we readily compute

∑

(k′,t′)∈I

eβ{|k−k
′|+d(t,t′)}C(k,t)(k′,t′)(v) ≤ C̃orr(ν, β) + (1− ε2)eβ(r+1)∆ ≤ 1

2

where we have used the assumption of the Proposition. By Theorem 2.11

‖(F̃sν)v,K
′

x,z − (F̃sν)v,K
′

x̃,z ‖ = ‖ρ− ρ̃‖(1,v)

≤ 2(1− ε2) 1v′∈K
∑

t′∈N(v′)

D(1,v)(0,t′)(v)

+ 2(1− ε2∆) 1v′∈⋃w∈N(v)∩K′ N(w) D(1,v)(1,v)(v)

where D(v) :=
∑

n≥0C(v)n. But note that the right-hand side does not depend on

K ′ or z, x, x̃ (provided xV \{v
′} = x̃V \{v

′}). We therefore obtain

C̃ F̃sν
vv′ ≤ (1− ε2) 1v′∈K

∑

t′∈N(v′)

D(1,v)(0,t′)(v)

+ (1− ε2∆) 1v′∈⋃w∈N(v)∩K′ N(w)D(1,v)(1,v)(v)

for every K ∈ K, v ∈ K, and v′ ∈ V .
To proceed, we note that

∑

v′∈V

eβd(v,v′)C̃ F̃sν
vv′ ≤ (1− ε2)

∑

v′∈K

eβd(v,v′)
∑

t′∈N(v′)

D(1,v)(0,t′)(v)

+ (1− ε2∆)D(1,v)(1,v)(v)
∑

v′∈
⋃
w∈N(v)∩K′ N(w)

eβd(v,v′)

≤ (1− ε2∆)e2βr∆2
∑

(k′,v′)∈I

eβ{|1−k
′|+d(v,v′)}D(1,v)(k′,v′)(v).

Applying Lemma 2.13 to C(v) yields the result.

We now iterate the above result.
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Corollary A.10. Suppose there exists ε > 0 such that

ε ≤ pv(x, zv) ≤ ε−1 for all v ∈ V, x, z ∈ X,

and such that

ε > ε0 =

(
1− 1

16∆2

)1/2∆

.

Let µ be a probability measure on X such that

C̃orr(µ, β) ≤ 1

8
,

where β = −(2r)−1 log 16∆2(1− ε2∆) > 0. Then

C̃orr(π̃µn, β) ≤ 1

8
for all n ≥ 0.

In particular, the latter holds whenever µ = δx for any x ∈ X.

Proof. The assumption ε > ε0 implies β > 0 and

(1− ε2)eβ(r+1)∆ ≤ 1

16
.

Therefore, if C̃orr(ν, β) ≤ 1/8, then Proposition A.9 yields

C̃orr(F̃sν, β) ≤ 2(1− ε2∆)e2βr∆2 ≤ 1

8
.

Thus if C̃orr(µ, β) ≤ 1/8, then C̃orr(π̃µn, β) ≤ 1/8 for all n ≥ 0. Moreover, as

C̃orr(δx, β) = 0, the result hold automatically for µ = δx.

We finally obtain the requisite bound on Corr(π̃µn, β) using Lemma A.8.

Corollary A.11 (Decay of correlations). Suppose there exists ε > 0 with

ε ≤ pv(x, zv) ≤ ε−1 for all v ∈ V, x, z ∈ X,

such that

ε > ε0 =

(
1− 1

16∆2

)1/2∆

.

Let β = −(2r)−1 log 16∆2(1− ε2∆) > 0. Then

Corr(π̃xn, β) ≤ 1

3

for every n ≥ 0 and x ∈ X.

Proof. By Corollary A.10 and Lemma A.8, we can estimate

Corr(π̃xn, β) ≤ 1

16
+

1

4
ε−2∆ ≤ 1

3

where we used that ε2∆ ≥ 1− 1/16.
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A.4 Bounding the bias

In the previous sections, we have proved a local filter stability bound (Proposition
A.2), a local one-step error bound (Propositions A.6 and A.7), and decay of correla-
tions of the block filter (Corollary A.11). We can now combine these results to obtain
a time-uniform error bound between the filter and the block filter; this controls the
bias of the block particle filtering algorithm.

Theorem A.12 (Bias term). Suppose there exists ε > 0 such that

ε ≤ pv(x, zv) ≤ ε−1 for all v ∈ V, x, z ∈ X,

and such that

ε > ε0 =

(
1− 1

18∆2

)1/2∆

.

Let β = −(2r)−1 log 18∆2(1− ε2∆) > 0. Then

‖πxn − π̃xn‖J ≤
8e−β

1− e−β (1− ε2∆) card J e−βd(J,∂K)

for every n ≥ 0, x ∈ X, K ∈ K and J ⊆ K.

Proof. We begin with the elementary error decomposition

‖πxn − π̃xn‖J ≤
n∑

s=1

‖Fn · · · Fs+1Fsπ̃
x
s−1 − Fn · · · Fs+1F̃sπ̃

x
s−1‖J .

We will bound each term in the sum.
Case s = n. To bound this term, note that

Corr(π̃xn−1, β) + (1− ε2)eβ(r+1)∆ ≤ 1

3
+

1

18
≤ 1

2

by Corollary A.11. Therefore, applying Proposition A.7 with ν = π̃xn−1, we obtain

‖Fnπ̃xn−1 − F̃nπ̃
x
n−1‖J ≤ 4e−β(1− ε2∆) e−βd(J,∂K) card J.

Case s < n. To bound this term, note that by Corollary A.11

Corr(π̃xs , β) + 3(1− ε2∆)e2βr∆2 ≤ 1

3
+

1

6
=

1

2
.

Applying Proposition A.2 with µ = π̃xs and ν = Fsπ̃
x
s−1 yields

‖Fn · · · Fs+1Fsπ̃
x
s−1 − Fn · · · Fs+1F̃sπ̃

x
s−1‖J

≤ 2e−β(n−s)
∑

v∈J

max
v′∈V

e−βd(v,v′) sup
x,z∈X

‖(Fsπ̃xs−1)v
′

x,z − (F̃sπ̃
x
s−1)v

′

x,z‖.
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On the other hand, as by Corollary A.11

Corr(π̃xs−1, β) + (1− ε2)eβ(r+1)∆ ≤ 1

3
+

1

18
≤ 1

2
,

we have by Proposition A.6 with ν = π̃xs−1

sup
x,z∈X

‖(Fsπ̃xs−1)v
′

x,z − (F̃sπ̃
x
s−1)v

′

x,z‖ ≤ 4e−β(1− ε2∆) e−βd(v′,∂K).

We therefore obtain the estimate

‖Fn · · · Fs+1Fsπ̃
x
s−1 − Fn · · · Fs+1F̃sπ̃

x
s−1‖J

≤ 8e−β(1− ε2∆) e−β(n−s)e−βd(J,∂K) card J,

where we have used d(v, v′) + d(v′, ∂K) ≥ d(v, ∂K).
Substituting the above two cases into the error decomposition and summing the

geometric series yields the statement of the Theorem.

A.5 Local stability of the block filter

As was explained in Section 4.5.4, the chief difficulty in obtaining a time-uniform
bound on the variance term is to establish stability of the block filter. This will be
done in the present section.

We first establish a stability bound for nonrandom initial conditions.

Proposition A.13. Suppose there exists ε > 0 such that

ε ≤ pv(x, zv) ≤ ε−1 for all v ∈ V, x, z ∈ X,

and such that

ε > ε0 =

(
1− 1

6∆2

)1/2∆

.

Let β = − log 6∆2(1− ε2∆) > 0. Then

‖F̃n · · · F̃s+1δz − F̃n · · · F̃s+1δz′‖J ≤ 4 card J e−β(n−s)

for every s < n, z, z′ ∈ X, K ∈ K, and J ⊆ K.

Proof. Fix throughout the proof n > 0, K ∈ K, and J ⊆ K. We will also assume
throughout the proof for notational simplicity that s = 0 (the ultimate conclusion
will extend to any s < n as in the proof of Proposition A.2).

We begin by constructing the computation tree as explained in section 4.5.4.
For future reference, let us work first in the more general setting where the initial
distributions µ =

⊗
K′∈K µ

K′ and ν =
⊗

K′∈K ν
K′ are independent across the blocks

(rather than the special case of point masses δx and δx′). Define for K ′ ∈ K

N(K ′) = {K ′′ ∈ K : d(K ′, K ′′) ≤ r},
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that is, N(K ′) is the collection of blocks that interact with block K ′ in one step of
the dynamics (recall that cardN(K ′) ≤ ∆K). Then we can evidently write

BK
′
F̃sµ = CK

′

s PK
′ ⊗

K′′∈N(K′)

µK
′′
,

where we have defined for any probability η on XK′

(CK
′

s η)(A) :=

∫
1A(xK

′
)
∏

v∈K′ g
v(xv, Y v

s ) η(dxK
′
)∫ ∏

v∈K′ g
v(xv, Y v

s ) η(dxK′)
,

and for any probability η on X
⋃
K′′∈N(K′)K

′′

(PK
′
η)(A) :=

∫
1A(xK

′
)
∏

v∈K′
pv(z, xv)ψv(dxv) η(dz).

We therefore have

BK F̃n · · · F̃1µ =

CKn P
K

⊗

Kn−1∈N(K)

[
C
Kn−1

n−1 PKn−1

⊗

Kn−2∈N(Kn−1)

[
C
Kn−2

n−2 PKn−2 · · ·

⊗

K1∈N(K2)

[
CK1

1 PK1

⊗

K0∈N(K1)

µK0

]
· · ·
]]
.

The structure of the computation tree is now readily visible in this expression. To
formalize the construction, we introduce the tree index set

T := {[Ku · · ·Kn−1] : 0 ≤ u < n, Ks ∈ N(Ks+1) for u ≤ s < n} ∪ {[∅]}

where we writeKn := K for simplicity (recall thatK and n are fixed throughout). The
root of the tree [∅] represents the block K at time n, while [Ku · · ·Kn−1] represents
the duplicate of block Ku at time u that affects block K at time n along the branch
Ku → Ku+1 → · · · → Kn−1 → K (cf. Figure 4.4 for a simple illustration). The vertex
set corresponding to the computation tree is defined as

I = {[Ku · · ·Kn−1]v : [Ku · · ·Kn−1] ∈ T, v ∈ Ku} ∪ {[∅]v : v ∈ K},

and the corresponding state space is given by

S =
∏

i∈I

Xi, X[t]v = Xv for [t]v ∈ I.

It will be convenient in the sequel to introduce some additional notation. First, we
will specify the children c(i) of an index i ∈ I as follows:

c([Ku · · ·Kn−1]v) := {[Ku−1 · · ·Kn−1]v′ : Ku−1 ∈ N(Ku), v
′ ∈ N(v)},
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and similarly for c([∅]v). Denote the depth d(i) and location v(i) of i ∈ I as

d([Ku · · ·Kn−1]v) := u, d([∅]v) := n, v([t]v) := v.

We define the index set of non-leaf vertices in I as

I+ := {i ∈ I : 0 < d(i) ≤ n},

and the set of leaves of the tree T as

T0 := {[K0 · · ·Kn−1] : Ks ∈ N(Ks+1) for 0 ≤ s < n}.

Finally, it will be natural to identify [t] ∈ T with the corresponding subset of I:

[Ku · · ·Kn−1] = {[Ku · · ·Kn−1]v : v ∈ Ku},

together with the analogous identification for [∅].
We now define the probability measures ρ, ρ̃ on S as follows:

ρ(A) =
∫

1A(x)
∏

i∈I+ p
v(i)(xc(i), xi) gv(i)(xi, Y

v(i)
d(i) )ψv(i)(dxi)

∏
[t]∈T0

µ[t](dx[t])
∫ ∏

i∈I+ p
v(i)(xc(i), xi) gv(i)(xi, Y

v(i)
d(i) )ψv(i)(dxi)

∏
[t]∈T0

µ[t](dx[t])
,

ρ̃(A) =
∫

1A(x)
∏

i∈I+ p
v(i)(xc(i), xi) gv(i)(xi, Y

v(i)
d(i) )ψv(i)(dxi)

∏
[t]∈T0

ν [t](dx[t])
∫ ∏

i∈I+ p
v(i)(xc(i), xi) gv(i)(xi, Y

v(i)
d(i) )ψv(i)(dxi)

∏
[t]∈T0

ν [t](dx[t])
,

where we write µ[K0···Kn−1] := µK0 and ν [K0···Kn−1] := νK0 for simplicity. Then, by
construction, the measure BK F̃n · · · F̃1µ coincides with the marginal of ρ on the root
of the computation tree, while BK F̃n · · · F̃1ν coincides with the marginal of ρ̃ on the
root of the computation tree. In particular, we obtain

‖F̃n · · · F̃1µ− F̃n · · · F̃1ν‖J = ‖ρ− ρ̃‖[∅]J .

We will use Theorem 2.11 to obtain a bound on this expression.
Throughout the remainder of the proof, we specialize to the case that µ = δz

and ν = δz′ . To apply Theorem 2.11, we must bound the quantities Cij and bi with
i = [Ku · · ·Kn−1]v and j = [K ′u′ · · ·K ′n−1]v′. We distinguish three cases.

Case u = 0. As µ = δz is nonrandom we evidently have ρix = δzv , so that Cij = 0.
On the other hand, as ρ̃ix = δz′v , we cannot do better than bi ≤ 2.

Case 0 < u < n. Now we have

ρix(A) = ρ̃ix(A) = ∫
1A(xi) gv(xi, Y v

u ) pv(xc(i), xi)
∏

`∈I+:i∈c(`) p
v(`)(xc(`), x`)ψv(dxi)∫

gv(xi, Y v
u ) pv(xc(i), xi)

∏
`∈I+:i∈c(`) p

v(`)(xc(`), x`)ψv(dxi)
.
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Thus bi = 0. Moreover, by inspection, ρix does not depend on xj except in the
following cases: j ∈ c(i); i ∈ c(j); j ∈ c(`) for some ` ∈ I+ such that i ∈ c(`). As
card c(`) ≤ ∆ for every ` ∈ I+, we estimate using Lemma A.1

Cij ≤





1− ε2 if j ∈ c(i),
1− ε2 if i ∈ c(j),
1− ε2∆ if j ∈ ⋃`∈I+:i∈c(`) c(`),

0 otherwise.

This yields

∑

j∈I

eβ|d(i)−d(j)|Cij ≤ 2(1− ε2)eβ∆ + (1− ε2∆)∆2 ≤ 3(1− ε2∆)eβ∆2,

where we have used that β > 0 and ∆ ≥ 1 in the last inequality.

Case u = n. Now i = [∅]v, so we have

ρix(A) = ρ̃ix(A) =

∫
1A(xi) gv(xi, Y v

n ) pv(xc(i), xi)ψv(dxi)∫
gv(xi, Y v

n ) pv(xc(i), xi)ψv(dxi)
.

Arguing precisely as above, we obtain bi = 0 and

∑

j∈I

eβ|d(i)−d(j)|Cij ≤ (1− ε2)eβ∆.

Combining the above three cases, we obtain

max
i∈I

∑

j∈I

eβ|d(i)−d(j)|Cij ≤ 3(1− ε2∆)eβ∆2 =
1

2

by the assumption of the Proposition. Thus by Theorem 2.11

‖F̃n · · · F̃1δz − F̃n · · · F̃1δz′‖J = ‖ρ− ρ̃‖[∅]J ≤ 4 card J e−βn,

where we have used Lemma 2.13 with m(i, j) = β|d(i)−d(j)|. The proof is completed
by extending to general s < n as in the proof of Proposition A.2.

The proof of Proposition A.13 was simplified by the fact that the resulting bound
holds uniformly for all point mass initial conditions (this could be used to obtain a
uniform bound for all initial measures along the same lines as the proof of Corollary
A.5). To obtain a bound on the variance term, however, we require a more precise
stability bound for the block filter that provides explicit control in terms of the initial
conditions. We will shortly deduce such a bound from Proposition A.13. Before we
can do so, however, we must prove a refinement of Lemma 2.9.
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Lemma A.14. Let µ = µ1 ⊗ · · · ⊗ µd and ν = ν1 ⊗ · · · ⊗ νd be product probability
measures on S = S1 × · · · × Sd, and let Λ : S → R be a bounded and strictly positive
measurable function. Define the probability measures

µΛ(A) :=

∫
1A(x)Λ(x)µ(dx)∫

Λ(x)µ(dx)
, νΛ(A) :=

∫
1A(x)Λ(x)ν(dx)∫

Λ(x)ν(dx)
.

Suppose that there exists a constant ε > 0 such that the following holds: for every
i = 1, . . . , d, there is a measurable function Λi : S→ R such that

εΛi(x) ≤ Λ(x) ≤ ε−1Λi(x) for all x ∈ S

and such that Λi(x) = Λi(x̃) whenever x{1,...,d}\{i} = x̃{1,...,d}\{i}. Then

‖µΛ − νΛ‖ ≤
2

ε2

d∑

i=1

‖µi − νi‖.

Proof. Define for i = 0, . . . , d the measures

ρi := ν1 ⊗ · · · ⊗ νi ⊗ µi+1 ⊗ · · · ⊗ µd, ρi,Λ(A) :=

∫
1A(x)Λ(x)ρi(dx)∫

Λ(x)ρi(x)

(by convention, ρ0 = µ and ρd = ν). Then we can estimate

‖µΛ − νΛ‖ ≤
d∑

i=1

‖ρi,Λ − ρi−1,Λ‖.

Now note that we can estimate for |f | ≤ 1

|ρi,Λ(f)− ρi−1,Λ(f)| ≤ 1

ερi(Λi)

[
|ρi(fΛ)− ρi−1(fΛ)|+ |ρi(Λ)− ρi−1(Λ)|

]

as in the proof of Lemma 2.9. Moreover, we can write

|ρi(fΛ)− ρi−1(fΛ)| = ρi(Λ
i)

ε

∣∣∣∣∣

∫
f i(x)νi(dxi)−

∫
f i(x)µi(dxi)

∣∣∣∣∣,

|ρi(Λ)− ρi−1(Λ)| = ρi(Λ
i)

ε

∣∣∣∣∣

∫
gi(x)νi(dxi)−

∫
gi(x)µi(dxi)

∣∣∣∣∣,

where f i and gi are functions on Si defined by

f i(xi) :=
ε

ρi(Λi)

∫
f(x)Λ(x) ν1(dx1) · · · νi−1(dxi−1)µi+1(dxi+1) · · ·µd(dxd),

gi(xi) :=
ε

ρi(Λi)

∫
Λ(x) ν1(dx1) · · · νi−1(dxi−1)µi+1(dxi+1) · · ·µd(dxd).

Evidently |f i| ≤ 1 and |gi| ≤ 1, and the proof follows directly.
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We can now obtain a stability bound with control on the initial conditions.

Proposition A.15. Suppose there exists ε > 0 with

ε ≤ pv(x, zv) ≤ ε−1 for all v ∈ V, x, z ∈ X

such that

ε > ε0 =

(
1− 1

6∆2

)1/2∆

.

Let β = − log 6∆2(1− ε2∆) > 0. Then for any product probability measures

µ =
⊗

K∈K

µK , ν =
⊗

K∈K

νK ,

we have

‖F̃n · · · F̃s+1µ− F̃n · · · F̃s+1ν‖J ≤
4

ε2|K|∞
card J e−β(n−s)

∑

K∈K

αK‖µK − νK‖

for every s < n, K ∈ K, and J ⊆ K. Here (αK)K∈K are nonnegative integers,
depending on J and n− s only, such that

∑
K∈K αK ≤ ∆n−s

K .

Proof. We fix s = 0, n > 0, K ∈ K, J ⊆ K as in the proof of Proposition A.13, and
adopt the notation used there. Define the functions

hA(xT0) :=

∫
1A(x[∅]J)

∏

i∈I+

pv(i)(xc(i), xi) gv(i)(xi, Y
v(i)
d(i) )ψv(i)(dxi),

h(xT0) :=

∫ ∏

i∈I+

pv(i)(xc(i), xi) gv(i)(xi, Y
v(i)
d(i) )ψv(i)(dxi)

on the leaves T0 of the computation tree, for every measurable A ⊆ XJ . Then

(F̃n · · · F̃1µ)(A) =

∫
hA(xT0)

∏
[t]∈T0

µ[t](dx[t])∫
h(xT0)

∏
[t]∈T0

µ[t](dx[t])
=

∫
hA(xT0)

h(xT0)
µ̃(dxT0),

where we define the measure

µ̃(A) :=

∫
1A(xT0)h(xT0)

∏
[t]∈T0

µ[t](dx[t])∫
h(xT0)

∏
[t]∈T0

µ[t](dx[t])
.

The measure ν̃ is define analogously, and we have

‖F̃n · · · F̃1µ− F̃n · · · F̃1ν‖J = 2 sup
A⊆XJ

∣∣∣∣
∫
hA
h
dµ̃−

∫
hA
h
dν̃

∣∣∣∣,

where the supremum is taken only over measurable sets. But note that hA/h is
precisely the filter obtained when the initial condition is a point mass on the leaves

143



of the computation tree (albeit not with the special duplication pattern induced by
the unravelling of the original model; however, this was not used in the proof of
Proposition A.13). Therefore, the proof of Proposition A.13 yields

2 sup
z,z̃∈XT0

sup
A⊆XJ

∣∣∣∣
hA(z)

h(z)
− hA(z̃)

h(z̃)

∣∣∣∣ ≤ 4 card J e−βn.

In particular, using the identity |µ(f)− ν(f)| ≤ 1
2

osc f ‖µ− ν‖, we obtain

‖F̃n · · · F̃1µ− F̃n · · · F̃1ν‖J ≤ 2 card J e−βn ‖µ̃− ν̃‖.

We now aim to apply Lemma A.14 to estimate ‖µ̃− ν̃‖.
To this end, consider a block [t] ∈ T0. The integrand in the definition of h(xT0)

depends only on x[t] through the terms pv(i)(xc(i), xi) with c(i) ∩ [t] 6= ∅. If we write
[t] = [K0 · · ·Kn−1], then c(i)∩ [t] 6= ∅ requires at least i ∈ [K1 · · ·Kn−1] and therefore
card{i ∈ I+ : c(i) ∩ [t] 6= ∅} ≤ cardK1 ≤ |K|∞. Thus we have

ε|K|∞h[t](z) ≤ h(z) ≤ ε−|K|∞h[t](z)

for every z ∈ XT0 and [t] ∈ T0, where

h[t](xT0) :=

∫ ∏

i∈I+:c(i)∩[t]=∅

pv(i)(xc(i), xi)
∏

i∈I+

gv(i)(xi, Y
v(i)
d(i) )ψv(i)(dxi)

does not depend on x[t]. By Lemma A.14, we obtain

‖µ̃− ν̃‖ ≤ 2

ε2|K|∞

∑

[t]∈T0

‖µ[t] − ν [t]‖ =
2

ε2|K|∞

∑

K′∈K

αK′‖µK
′ − νK′‖,

where we define αK′ = card{[K0 · · ·Kn−1] ∈ T0 : K0 = K ′}. As the computation tree
has a branching factor of at most ∆K, we evidently have

∑
K∈K αK = cardT0 ≤ ∆n

K.
The result therefore follows directly for the case s = 0, and the general case s < n is
immediate as in the proof of Proposition A.2.

We finally state the block filter stability bound in its most useful form.

Corollary A.16 (Block filter stability). Suppose there exists ε > 0 with

ε ≤ pv(x, zv) ≤ ε−1 for all v ∈ V, x, z ∈ X

such that

ε > ε0 =

(
1− 1

6∆K∆2

)1/2∆

.

Let β = − log 6∆K∆2(1− ε2∆) > 0.
Then for any (possibly random) product probability measures

µ =
⊗

K∈K

µK , ν =
⊗

K∈K

νK ,
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we have
√

E ‖F̃n · · · F̃s+1µ− F̃n · · · F̃s+1ν‖2
J

≤ 4

ε2|K|∞
card J e−β(n−s) max

K∈K

√
E ‖µK − νK‖2

for every s < n, K ∈ K, and J ⊆ K.

Proof. The result follows readily from Proposition A.15 (note that we have now ab-
sorbed the branching factor ∆n−s

K in the definition of β).

A.6 Bounding the variance

To complete the proof of Theorem 4.2, it now remains to bound the variance term
|||π̃n − π̂n|||J uniformly in time. This is the goal of the present section. We will first
obtain bounds on the one-step error, and then combine these with the block filter
stability bound of Corollary A.16 to obtain time-uniform control of the error. The
main remaining difficulty is to properly account for the fact that Corollary A.16 is
phrased in terms of the total variation norm ‖ · ‖J , which is too strong to control the
sampling error (we do not know how to prove an analogous result to Corollary A.16
in the weaker |||·|||J -norm). To this end, we retain one time step of the block filter

dynamics in the one-step error (we control ‖F̃s+1F̃sπ̂
x
s−1 − F̃s+1F̂sπ̂

x
s−1‖K rather than

|||F̃sπ̂xs−1 − F̂sπ̂
x
s−1|||K), which allows us to exploit the fact that the dynamics P has a

density.
Let us begin with the most trivial result: a one-step bound in the |||·|||J -norm.

This estimate will be used to bound the error in the last time step s = n.

Lemma A.17 (Sampling error, s = n). Suppose there exists κ > 0 such that

κ ≤ gv(xv, yv) ≤ κ−1 for all v ∈ V, x ∈ X, y ∈ Y.

Then

max
K∈K
|||F̃nπ̂µn−1 − F̂nπ̂

µ
n−1|||K ≤

2κ−2|K|∞
√
N

.

Proof. Note that

|||F̃nπ̂µn−1 − F̂nπ̂
µ
n−1|||K = |||CKn BKPπ̂µn−1 − CKn B

KSNPπ̂µn−1|||

≤ 2κ−2 cardK |||Pπ̂µn−1 − SNPπ̂µn−1||| ≤
2κ−2 cardK

√
N

,

where the first inequality is Lemma 2.9 and the second inequality follows from the
simple estimate |||µ− SNµ||| ≤ 1/

√
N that holds for any probability µ.

For the error in steps s < n, the requisite one-step bound (Proposition A.20) is
more involved. Before we prove it, we must first introduce an elementary lemma
about products of empirical measures that will be needed below.
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Lemma A.18. For any probability measure µ, we have

|||µ⊗d − µ̂⊗d||| ≤ 4d√
N
,

where µ̂ = 1
N

∑N
k=1 δXk and X1, . . . , XN are i.i.d. ∼ µ.

Proof. We assume throughout that N ≥ d2 without loss of generality (otherwise the
bound is trivial). Let |f | ≤ 1 be a measurable function. Then

µ̂⊗d(f) =
1

Nd

N∑

k1,...,kd=1

f(Xk1 , . . . , Xkd).

We begin by bounding

Var[µ̂⊗d(f)] =
1

N2d

N∑

k1,...,kd=1

N∑

k′1,...,k
′
d=1

E(Fk1,...,kdFk′1,...,k′d)

where
Fk1,...,kd := f(Xk1 , . . . , Xkd)− E f(Xk1 , . . . , Xkd).

Note that E(Fk1,...,kdFk′1,...,k′d) = 0 when {k1, . . . , kd} ∩ {k′1, . . . , k′d} = ∅. Thus

Var[µ̂⊗d(f)] ≤ 4

N2d

N∑

k1,...,kd=1

N∑

k′1,...,k
′
d=1

1{k1,...,kd}∩{k′1,...,k′d}6=∅,

where we use |Fk1,...,kd| ≤ 2. But for each choice of k1, . . . , kd, there are at least
(N − d)d choices of k′1, . . . , k

′
d such that {k1, . . . , kd} ∩ {k′1, . . . , k′d} = ∅, so

Var[µ̂⊗d(f)] ≤ 4

(
1− Nd(N − d)d

N2d

)
= 4

(
1−

(
1− d

N

)d)
≤ 4d2

N
.

We can therefore estimate

|||µ⊗d − µ̂⊗d||| ≤ ‖µ⊗d − E µ̂⊗d‖+ |||E µ̂⊗d − µ̂⊗d|||

≤ ‖µ⊗d − E µ̂⊗d‖+
2d√
N
.

It remains to estimate the first term. To this end, note that E f(Xk1 , . . . , Xkn) =
µ⊗d(f) whenever k1 6= · · · 6= kn. Therefore, we evidently have

|E µ̂⊗d(f)− µ⊗d(f)| ≤ 1

Nd

N∑

k1,...,kd=1

|E f(Xk1 , . . . , Xkd)− µ⊗d(f)|

≤ 2

(
1− 1

Nd

N !

(N − d)!

)
≤ 2

(
1−

(
1− d

N

)d)
≤ 2d2

N
.

But as N ≥ d2, we have d2/N ≤ d/
√
N . The result follows.
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This result will be used in the following form.

Corollary A.19. For any subset of blocks L ⊆ K, we have

|||⊗K∈LB
Kµ−⊗K∈LB

KSNµ||| ≤ 4 cardL√
N

for every probability measure µ on X and s ≥ 1.

Proof. Write µ̂ := SNµ and d = cardL, and let us enumerate the blocks L =
{K1, . . . , Kd}. Then for any bounded function f : X

⋃
L → R, we can write

(
⊗

K∈LB
Kµ)(f) =

∫
f(xK1

1 , . . . , xKdd )µ(dx1) · · ·µ(dxd),

(
⊗

K∈LB
KSNµ)(f) =

∫
f(xK1

1 , . . . , xKdd ) µ̂(dx1) · · · µ̂(dxd).

Thus evidently

|||⊗K∈LB
Kµ−⊗K∈LB

KSNµ||| ≤ |||µ⊗d − µ̂⊗d|||,

and the result follows from Lemma A.18.

We now proceed to prove a one-step error bound for time steps s < n.

Proposition A.20 (Sampling error, s < n). Suppose there exist ε, κ > 0 with

ε ≤ pv(x, zv) ≤ ε−1, κ ≤ gv(xv, yv) ≤ κ−1 ∀ v ∈ V, x, z ∈ X, y ∈ Y.

Then

max
K∈K

√
E ‖F̃s+1F̃sπ̂

µ
s−1 − F̃s+1F̂sπ̂

µ
s−1‖2

K ≤
16∆K ε

−2|K|∞κ−4|K|∞∆K

√
N

for every 0 < s < n.

Proof. We begin by bounding using Lemma 2.9

‖F̃s+1F̃sπ̂
µ
s−1 − F̃s+1F̂sπ̂

µ
s−1‖K = ‖CKs+1B

KPF̃sπ̂
µ
s−1 − CKs+1B

KPF̂sπ̂
µ
s−1‖

≤ 2κ−2|K|∞‖BKPF̃sπ̂µs−1 − BKPF̂sπ̂
µ
s−1‖.

Now note that

(BKPF̃sπ̂
µ
s−1)(dxK)

ψK(dxK)
=

∫ ∏
v∈K p

v(z, xv)
∏

K′∈N(K)

∏
v′∈K′ g

v′(zv
′
, Y v′

s )(BK
′
Pπ̂µs−1)(dzK

′
)∫ ∏

K′∈N(K)

∏
v′∈K′ g

v′(zv′ , Y v′
s )(BK′Pπ̂µs−1)(dzK′)

,

(BKPF̂sπ̂
µ
s−1)(dxK)

ψK(dxK)
=

∫ ∏
v∈K p

v(z, xv)
∏

K′∈N(K)

∏
v′∈K′ g

v′(zv
′
, Y v′

s )(BK
′
SNPπ̂µs−1)(dzK

′
)∫ ∏

K′∈N(K)

∏
v′∈K′ g

v′(zv′ , Y v′
s )(BK′SNPπ̂µs−1)(dzK′)

,

147



where ψK(dxK) :=
∏

v∈K ψ
v(dxv), and we can write

‖BKPF̃sπ̂µs−1 − BKPF̂sπ̂
µ
s−1‖ =

∫ ∣∣∣∣∣
(BKPF̃sπ̂

µ
s−1)(dxK)

ψK(dxK)
− (BKPF̂sπ̂

µ
s−1)(dxK)

ψK(dxK)

∣∣∣∣∣ψ
K(dxK).

We therefore have by Minkowski’s integral inequality
√

E ‖BKPF̃sπ̂µs−1 − BKPF̂sπ̂
µ
s−1‖2

≤
∫
√√√√E

∣∣∣∣∣
(BKPF̃sπ̂

µ
s−1)(dxK)

ψK(dxK)
− (BKPF̂sπ̂

µ
s−1)(dxK)

ψK(dxK)

∣∣∣∣∣

2

ψK(dxK)

≤ ψK(XK) sup
xK∈XK

√√√√E

∣∣∣∣∣
(BKPF̃sπ̂

µ
s−1)(dxK)

ψK(dxK)
− (BKPF̂sπ̂

µ
s−1)(dxK)

ψK(dxK)

∣∣∣∣∣

2

.

As we have

εψv(Xv) ≤
∫
pv(x, zv)ψv(dzv) = 1,

∏

v∈K

pv(z, xv) ≤ ε−|K|∞ ,

and
κ|K|∞∆K ≤

∏

K′∈N(K)

∏

v′∈K′
gv
′
(zv

′
, Y v′

s ) ≤ κ−|K|∞∆K ,

we can apply Lemma 2.9 to estimate
√

E ‖BKPF̃sπ̂µs−1 − BKPF̂sπ̂
µ
s−1‖2

≤ 2ε−2|K|∞κ−2|K|∞∆K|||⊗K′∈N(K)B
K′Pπ̂µs−1 −

⊗
K′∈N(K)B

K′SNPπ̂µs−1|||.
By Corollary A.19 (applied conditionally given π̂µs−1), we obtain

√
E ‖BKPF̃sπ̂µs−1 − BKPF̂sπ̂

µ
s−1‖2 ≤ 8∆K ε

−2|K|∞κ−2|K|∞∆K

√
N

.

The result follows immediately.

We finally put everything together.

Theorem A.21 (Variance term). Suppose there exist ε, κ > 0 with

ε ≤ pv(x, zv) ≤ ε−1, κ ≤ gv(xv, yv) ≤ κ−1 ∀ v ∈ V, x, z ∈ X, y ∈ Y

such that

ε > ε0 =

(
1− 1

6∆K∆2

)1/2∆

.

Let β = − log 6∆K∆2(1− ε2∆) > 0. Then

|||π̃xn − π̂xn|||J ≤ card J
64∆K e

β

1− e−β
ε−4|K|∞κ−4|K|∞∆K

√
N

for every n ≥ 0, x ∈ X, K ∈ K and J ⊆ K.
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Proof. We begin with the elementary error decomposition

|||π̃xn − π̂xn|||J ≤
n∑

s=1

|||F̃n · · · F̃s+1F̃sπ̂
x
s−1 − F̃n · · · F̃s+1F̂sπ̂

x
s−1|||J .

The term s = n in this sum is bounded in Lemma A.17:

|||F̃nπ̂xn−1 − F̂nπ̂
x
n−1|||J ≤

2κ−2|K|∞
√
N

.

The term s = n− 1 is bounded in Proposition A.20:

|||F̃nF̃n−1π̂
x
s−1 − F̃nF̂n−1π̂

x
s−1|||J ≤

16∆K ε
−2|K|∞κ−4|K|∞∆K

√
N

.

Now suppose s < n− 1. Then we can estimate using Corollary A.16

|||F̃n · · · F̃s+1F̃sπ̂
x
s−1 − F̃n · · · F̃s+1F̂sπ̂

x
s−1|||J

≤ 4

ε2|K|∞
card J e−β(n−s−1) max

K∈K

√
E ‖F̃s+1F̃sπ̂xs−1 − F̃s+1F̂sπ̂xs−1‖2

K .

Applying Proposition A.20 yields

|||F̃n · · · F̃s+1F̃sπ̂
x
s−1 − F̃n · · · F̃s+1F̂sπ̂

x
s−1|||J

≤ card J e−β(n−s−1) 64∆K ε
−4|K|∞κ−4|K|∞∆K

√
N

.

Substituting the above three cases into the error decomposition and summing the
geometric series yields the statement of the Theorem.

Theorems A.12 and A.21 now immediately yield Theorem 4.2.
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Appendix B

Localized Gibbs sampler particle
filter: proofs

The goal of this section is to prove Theorem 5.4. What follows directly builds on the
discussion presented in Section 5.6.

The key idea to bound ‖Fnρ− F̃nρ‖J is to use the one-sided Dobrushin comparison
theorem (Theorem 2.12) to capture the one-sidedness that is embedded in the Gibbs
samplers Fnρ and F̃nρ. To this end, we need to bound the one-sided coefficients Cij’s
and bj’s. This will be achieved, respectively, using Proposition B.1 and Proposition
B.2 below; the proofs of these two propositions are based on the original Dobrushin
comparison theorem (Theorem 2.11).

B.1 Preliminary steps with Dobrushin comparison

theorem

The following proposition will be used to bound the Cij’s coefficients in the one-sided
comparison theorem.

Proposition B.1. Suppose there exists ε > 0 such that

ε ≤ pv(x, zv) ≤ ε−1 for all v ∈ V, x, z ∈ X.

Let ν be a probability measure on X, and suppose that

Corr(ν, β) + (1− ε2)eβ(r+1)∆ ≤ c < 1

for a sufficiently small constant β > 0. Fix n ≥ 1, and write ηv for ηvn,ν. For each
v, v′ ∈ V define

Rvv′ :=
1

2
sup
x,x̃∈X:

xV \{v
′}=x̃V \{v

′}

‖ηvx − ηvx̃‖.
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Then,

max
v∈V

∑

v′∈V

eβd(v,v′)Rvv′ ≤
(1− ε2) ∆ eβ(r−1)

1− c .

Proof. Henceforth, fix n ≥ 1, v, v′ ∈ V such that v 6= v′ and x, x̃ ∈ X such that
xV \{v

′} = x̃V \{v
′}. For simplicity, write ηv for ηvn,ν . Define I = ({0} × V ) ∪ (1, v) and

S = X× Xv, and the probability measures on S

ρ(A) :=

∫
1A(z, ω) gv(ω, Y v

n )
∏

w∈V \{v} p
w(z, xw) pv(z, ω) ν(dz)ψv(dω)∫

gv(ω, Y v
n )
∏

w∈V \{v} p
w(z, xw) pv(z, ω) ν(dz)ψv(dω)

,

ρ̃(A) :=

∫
1A(z, ω) gv(ω, Y v

n )
∏

w∈V \{v} p
w(z, x̃w) pv(z, ω) ν(dz)ψv(dω)∫

gv(ω, Y v
n )
∏

w∈V \{v} p
w(z, x̃w) pv(z, ω) ν(dz)ψv(dω)

.

By construction, for any bounded measurable function f on Xv we have

|ηvxf − ηvx̃f | =
∣∣∣∣
∫
ρ(dz, dω)f(ω)−

∫
ρ̃(dz, dω)f(ω)

∣∣∣∣ ,

and we will now proceed by applying the Dobrushin comparison theorem (Theorem
2.11) to bound this quantity. To this end, we must bound Cij and bi with i = (k′′, v′′)
and j = (k′′′, v′′′). We distinguish two cases.

Case k′′ = 0. In this case we have

ρi(z,ω)(A) =

∫
1A(zv

′′
)
∏

w∈N(v′′)\{v} p
w(z, xw) pv(z, ω) νv

′′
z (dzv

′′
)∫ ∏

w∈N(v′′)\{v} p
w(z, xw) pv(z, ω) νv′′z (dzv′′)

,

ρ̃i(z,ω)(A) =

∫
1A(zv

′′
)
∏

w∈N(v′′)\{v} p
w(z, x̃w) pv(z, ω) νv

′′
z (dzv

′′
)∫ ∏

w∈N(v′′)\{v} p
w(z, x̃w) pv(z, ω) νv′′z (dzv′′)

.

In particular, ρi(z,xv) = νv
′′
z,x, so Cij ≤ Cν

v′′v′′′ if k′′′ = 0. Moreover, as

ρi(z,xv)(A) ≥ ε2

∫
1A(zv

′′
)
∏

w∈N(v′′)\{v} p
w(z, xw) νv

′′
z (dzv

′′
)∫ ∏

w∈N(v′′)\{v} p
w(z, xw) νv′′z (dzv′′)

,

we have Cij ≤ 1 − ε2 if k′′′ = 1 (so v′′′ = v) and v ∈ N(v′′) by Lemma A.1, and
Cij = 0 otherwise. We therefore immediately obtain the estimate

∑

(k′′′,v′′′)∈I

eβk
′′′
eβd(v′′,v′′′)C(0,v′′)(k′′′,v′′′) ≤ Corr(ν, β) + (1− ε2)eβ(r+1).

On the other hand, note that ρi(z,ω) = ρ̃i(z,ω) if v′′ 6∈ N(v′), and that we have ρi(z,ω)(A) ≥
ε2χ(A) and ρ̃i(z,ω)(A) ≥ ε2χ(A), where

χ(A) :=

∫
1A(zv

′′
)
∏

w∈N(v′′)\{v,v′} p
w(z, xw) pv(z, ω) νv

′′
z (dzv

′′
)∫ ∏

w∈N(v′′)\{v,v′} p
w(z, xw) pv(z, ω) νv′′z (dzv′′)

.
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Therefore, by Lemma A.1

bi = sup
(z,ω)∈S

‖ρi(z,ω) − ρ̃i(z,ω)‖ ≤
{

0 for v′′ 6∈ N(v′),

2(1− ε2) otherwise.

Case k′′ = 1. In this case we have

ρi(z,ω)(A) = ρ̃i(z,ω)(A) =

∫
1A(ω) gv(ω, Y v

n ) pv(z, ω)ψv(dω)∫
gv(ω, Y v

n ) pv(z, ω)ψv(dω)
.

Thus bi = 0, and estimating as above we obtain Cij ≤ 1 − ε2 whenever k′′′ = 0 and
v′′′ ∈ N(v), and Cij = 0 otherwise. In particular, we obtain

∑

(k′′′,v′′′)∈I

eβ|1−k
′′′|eβd(v,v′′′)C(1,v)(k′′′,v′′′) ≤ (1− ε2)eβ(r+1)∆.

Combining the above two cases and the assumption of the Proposition yields

max
(k′′,v′′)∈I

∑

(k′′′,v′′′)∈I

eβ{|k
′′−k′′′|+d(v′′,v′′′)}C(k′′,v′′)(k′′′,v′′′) ≤ c.

Applying Theorem 2.11 gives

‖ηvx − ηvx̃‖ = sup
f∈Xv :|f |≤1

∣∣∣∣
∫
ρ(dz, dω)f(ω)−

∫
ρ̃(dz, dω)f(ω)

∣∣∣∣

≤ 2(1− ε2)
∑

v′′∈N(v′)

D(1,v)(0,v′′).

As the previous bound does not depend on the choice of x, x̃ ∈ X, as long as xV \{v
′} =

x̃V \{v
′}, we have

Rvv′ =
1

2
sup
x,x̃∈X:

xV \{v
′}=x̃V \{v

′}

‖ηvx − ηvx̃‖ ≤ (1− ε2)
∑

v′′∈N(v′)

D(1,v)(0,v′′).

By Lemma 2.13 it follows that

max
v∈V

∑

v′∈V

eβd(v,v′)Rvv′ ≤ (1− ε2) max
v∈V

∑

v′∈V

eβd(v,v′)
∑

v′′∈N(v′)

D(1,v)(0,v′′)

≤ (1− ε2) max
v∈V

∑

v′′∈V

eβd(v,v′′)+βrD(1,v)(0,v′′)

∑

v′∈V

1v′′∈N(v′)

≤ (1− ε2) ∆ eβ(r−1) max
v∈V

∑

v′′∈V

eβd(v,v′′)+βD(1,v)(0,v′′)

≤ (1− ε2) ∆ eβ(r−1)

1− c ,

and, in particular,

max
v∈V

∑

v′∈V

Rvv′ ≤
(1− ε2) ∆ eβ(r−1)

1− c .
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The following proposition will be used to bound the bj’s coefficients in the one-
sided comparison theorem.

Proposition B.2. Suppose there exists ε > 0 such that

ε ≤ pv(x, zv) ≤ ε−1 for all v ∈ V, x, z ∈ X.

Let ν be a probability measure on X, and suppose that

Corr(ν, β) + (1− ε2)eβ(r+1)∆ ≤ c < 1

for a sufficiently small constant β > 0. Fix n ≥ 1, and write ηv for ηvn,ν. Then, for
each v ∈ V we have

sup
x∈X
‖ηvx − η̃vx‖ ≤ 2

(1− ε2∆)e−β(2−r)

1− c e−βb.

Proof. Henceforth, fix n ≥ 1, v ∈ V , x ∈ X. For simplicity, write ηv for ηvn,ν and η̃v

for η̃vn,ν . Define I = ({0} × V )∪ (1, v) and S = X×Xv, and the probability measures
on S

ρ(A) :=

∫
1A(z, ω) gv(ω, Y v

n )
∏

w∈V \{v} p
w(z, xw) pv(z, ω) ν(dz)ψv(dω)∫

gv(ω, Y v
n )
∏

w∈V \{v} p
w(z, xw) pv(z, ω) ν(dz)ψv(dω)

,

ρ̃(A) :=

∫
1A(z, ω) gv(ω, Y v

n )
∏

w∈Nb(v)\{v} p
w(z, xw) pv(z, ω) ν(dz)ψv(dω)∫

gv(ω, Y v
n )
∏

w∈Nb(v)\{v} p
w(z, xw) pv(z, ω) ν(dz)ψv(dω)

.

By construction, for any bounded measurable function f on Xv we have

|ηvxf − η̃vxf | =
∣∣∣∣
∫
ρ(dz, dω)f(ω)−

∫
ρ̃(dz, dω)f(ω)

∣∣∣∣ ,

and we now proceed by applying the Dobrushin comparison theorem (Theorem 2.11)
to bound this quantity. To this end, we must bound Cij and bi with i = (k′, v′) and
j = (k′′, v′′). We distinguish two cases.

Case k′ = 0. In this case we have

ρi(z,xv)(A) =

∫
1A(zv

′
)
∏

w∈N(v′) p
w(z, xw) νv

′
z (dzv

′
)∫ ∏

w∈N(v′) p
w(z, xw) νv′z (dzv′)

,

ρ̃i(z,xv)(A) =

∫
1A(zv

′
)
∏

w∈N(v′)∩Nb(v) p
w(z, xw) νv

′
z (dzv

′
)∫ ∏

w∈N(v′)∩Nb(v) p
w(z, xw) νv′z (dzv′)

.

In particular, ρi(z,xv) = νv
′
z,x, so Cij ≤ Cν

v′v′′ if k′′ = 0. Moreover, as

ρi(z,xv)(A) ≥ ε2

∫
1A(zv

′
)
∏

w∈N(v′)\{v} p
w(z, xw) νv

′
z (dzv

′
)∫ ∏

w∈N(v′)\{v} p
w(z, xw) νv′z (dzv′)

,
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we have Cij ≤ 1− ε2 if k′′ = 1 (so v′′ = v) and v ∈ N(v′) by Lemma A.1, and Cij = 0
otherwise. We therefore immediately obtain the estimate

∑

(k′′,v′′)∈I

eβk
′′
eβd(v′,v′′)C(0,v′)(k′′,v′′) ≤ Corr(ν, β) + (1− ε2)eβ(r+1).

On the other hand, note that ρi(z,xv) = ρ̃i(z,xv) if N(v′) ⊆ Nb(v), and that we have

ρi(z,xv) ≥ ε2∆νv
′
z and ρ̃i(z,xv) ≥ ε2∆νv

′
z . Therefore, by Lemma A.1

bi = sup
(z,xv)∈S

‖ρi(z,xv) − ρ̃i(z,xv)‖ ≤
{

0 for v′ ∈ Nb(v)\∂Nb(v),

2(1− ε2∆) otherwise.

Case k′ = 1. In this case we have

ρi(z,xv)(A) = ρ̃i(z,xv)(A) =

∫
1A(xv) gv(xv, Y v

n ) pv(z, xv)ψv(dxv)∫
gv(xv, Y v

n ) pv(z, xv)ψv(dxv)
.

Thus bi = 0, and estimating as above we obtain Cij ≤ 1 − ε2 whenever k′′ = 0 and
v′′ ∈ N(v), and Cij = 0 otherwise. In particular, we obtain

∑

(k′′,v′′)∈I

eβ|1−k
′′|eβd(v,v′′)C(1,v)(k′′,v′′) ≤ (1− ε2)eβ(r+1)∆.

Combining the above two cases and the assumption of the Proposition yields

max
(k′,v′)∈I

∑

(k′′,v′′)∈I

eβ{|k
′−k′′|+d(v′,v′′)}C(k′,v′)(k′′,v′′) ≤ c.

Applying Theorem 2.11 and Lemma 2.13 gives

‖ηvx − η̃vx‖ = sup
f∈Xv :|f |≤1

∣∣∣∣
∫
ρ(dz, dω)f(ω)−

∫
ρ̃(dz, dω)f(ω)

∣∣∣∣

≤ 2(1− ε2∆)
∑

v′∈V \(Nb(v)\∂Nb(v))

D(1,v)(0,v′)

≤ 2

1− c (1− ε2∆)e−β e−βd(v,∂Nb(v))

≤ 2

1− c (1− ε2∆)e−β(2−r) e−βb,

where in the last inequality we used the fact that d(v, ∂Nb(v)) ≥ b − r + 1. As the
choice of x ∈ X was arbitrary, we get

sup
x∈X
‖ηvx − η̃vx‖ ≤ 2

(1− ε2∆)e−β(2−r)

1− c e−βb.
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B.2 Proof of Theorem 5.4 with one-sided Do-

brushin comparison theorem

Using Proposition B.1 and Proposition B.2 we can now apply the one-sided Dobrushin
comparison theorem (Theorem 2.12) to analyze the quantity ‖Fnν − F̃nν‖J and to
provide a bound that is spatially homogeneous in J ⊆ V . As explained in Section
5.6, the key intuition behind the following proof is that both the filter recursion and
the approximate filter recursion can be phrased in terms of Gibbs samplers, which
can then be easily compared.

Theorem B.3. Suppose there exists ε > 0 such that

ε ≤ pv(x, zv) ≤ ε−1 for all v ∈ V, x, z ∈ X.

Let ν be a probability measure on X, and suppose that

Corr(ν, β) + (1− ε2)eβ(r+1)∆ ≤ c < 1,

(1− ε2) eβ(r+1) ∆

1− c ≤ c′ < 1,

for a sufficiently small constant β > 0. Then, for each n ≥ 1 and J ⊆ V we have

‖Fnν − F̃nν‖J ≤ 2 card J

(
e−β(2−r)(1− ε2∆)

(1− c)(1− c′) e−βb +
1

1− c′ c
′m
)
.

Proof. Fix n ≥ 1 and J ⊆ V . To lighten the notation, we write ηv for ηvn,ν and Gv

for Gv
n,ν , and analogously for η̃v and G̃v. By construction, for each v ∈ V the kernel

Gv
n,ρ leaves the measure Fnρ invariant, that is,

(Fnρ)Gv
n,ρ = Fnρ.

Hence, we can express the filter recursion as m sweeps of a Gibbs sampler, namely,

Fnρ = (Fnρ)(Gv1
n,ρ · · ·Gvd

n,ρ)
m.

On the other hand, the approximate Gibbs sampler filter recursion reads

F̃nρ := ρ (G̃v1
n,ρ · · · G̃vd

n,ρ)
m.

Therefore, we can decompose the one-step error between filter and approximate
filter as

‖(Fnν)− (F̃nν)‖J = sup
f∈XJ :|f |≤1

|(Fnν)(Gv1 · · ·Gvd)mf − ν(G̃v1 · · · G̃vd)mf |

≤ sup
f∈XJ :|f |≤1

sup
z,z̃∈X

|δz(Gv1 · · ·Gvd)mf − δz̃(G̃v1 · · · G̃vd)mf |

≤ sup
z∈X
‖δz(Gv1 · · ·Gvd)m − δz(G̃v1 · · · G̃vd)m‖J

+ sup
z,z̃∈X

‖δz(Gv1 · · ·Gvd)m − δz̃(Gv1 · · ·Gvd)m‖J . (B.1)
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We first analyze the first term on the right side of (B.1), which will give us a
bound depending on the approximation parameter b. Henceforth, fix z ∈ X. For any
bounded measurable function f on X we have

δz(G
v1 · · ·Gvd)mf =

∫
δz(dx0)

m∏

`=1

d∏

k=1

ηvk(x
{v1,...,vk−1}
` x

{vk,...,vd}
`−1 , dxvk` ) f(xm),

δz(G̃
v1 · · · G̃vd)mf =

∫
δz(dx0)

m∏

`=1

d∏

k=1

η̃vk(x
{v1,...,vk−1}
` x

{vk,...,vd}
`−1 , dxvk` ) f(xm).

Define I :=
⋃m
`=0({`} × V ) and S :=

⊗m
`=0 X. Define the probability measures on S

ρ(A) :=

∫
δz(dx0)

m∏

`=1

d∏

k=1

ηvk(x
{v1,...,vk−1}
` x

{vk,...,vd}
`−1 , dxvk` ) 1A(x),

ρ̃(A) :=

∫
δz(dx0)

m∏

`=1

d∏

k=1

η̃vk(x
{v1,...,vk−1}
` x

{vk,...,vd}
`−1 , dxvk` ) 1A(x).

By construction, we have

|δz(Gv1 · · ·Gvd)mf − δz(G̃v1 · · · G̃vd)mf | =
∣∣∣∣
∫
ρ(dx)f(xm)−

∫
ρ̃(dx)f(xm)

∣∣∣∣ .

We want to use Theorem 2.12 to bound this quantity. To this end, let τ be defined
as

τ : i = (`, vk) ∈ I −→ τ(i) = `d+ k,

and for each i ∈ I, x ∈ S, let

γix(A) := ρ(X i ∈ A|XI≤τ(i)\{i} = xI≤τ(i)\{i}),

γ̃ix(A) := ρ̃(X i ∈ A|XI≤τ(i)\{i} = xI≤τ(i)\{i}).

We immediately find that for each x ∈ S, ` ∈ {1, . . . ,m}, k ∈ {1, . . . , d}, we have

γ(0,v)
x (A) = γ̃(0,v)

x (A) = δzv(A),

γ(`,vk)
x (A) = ηvk(x

{v1,...,vk−1}
` x

{vk,...,vd}
`−1 , A),

γ̃(`,vk)
x (A) = η̃vk(x

{v1,...,vk−1}
` x

{vk,...,vd}
`−1 , A).

Recall the following definition from Proposition B.1:

Rvv′ :=
1

2
sup
x,x̃∈X:

xI\{v
′}=x̃I\{v

′}

‖ηvx − ηvx̃‖ for v, v′ ∈ V .

It is easy to check that for each i, j ∈ I we have

Cij =

{
Rvv′ if i = (`, v), j = (`′, v′) for 0 ≤ τ(i)− τ(j) ≤ d− 1,

0 otherwise,
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and for each j ∈ I we have

bj =

{
supx∈X ‖ηvx − η̃vx‖ if j = (`, v), ` ≥ 1,

0 otherwise.

So, by Theorem 2.12 and Proposition B.2 (to bound the bj’s) we have

‖δz(Gv1 · · ·Gvd)m − δz(G̃v1 · · · G̃vd)m‖J ≤
∑

v∈J

∑

j∈I

D(m,v)j bj

≤ 2
(1− ε2∆)e−β(2−r)

1− c e−βb
∑

v∈J

∑

j∈I

D(m,v)j.

Moreover, by Proposition B.1 we have

max
i∈I

∑

j∈I

Cij = max
v∈V

∑

v′∈V

Rvv′ ≤
(1− ε2) ∆ eβ(r−1)

1− c ≤ c′ < 1,

from which by Lemma 2.13 it follows that

max
i∈I

∑

j∈I

Dij ≤
1

1− c′ .

We finally obtain

‖δz(Gv1 · · ·Gvd)m − δz(G̃v1 · · · G̃vd)m‖J ≤ 2 card J
(1− ε2∆)e−β(2−r)

(1− c)(1− c′) e−βb. (B.2)

We now analyze the second term on the right side of (B.1), which will give us
a bound depending on the iteration step m. Henceforth, fix z, z̃ ∈ X. Define the
probability measures on S

ρ(A) :=

∫
δz(dx0)

m∏

`=1

d∏

k=1

ηvk(x
{v1,...,vk−1}
` x

{vk,...,vd}
`−1 , dxvk` ) 1A(x),

ρ̃(A) :=

∫
δz̃(dx0)

m∏

`=1

d∏

k=1

ηvk(x
{v1,...,vk−1}
` x

{vk,...,vd}
`−1 , dxvk` ) 1A(x).

By construction we have, for any bounded measurable function f on X,

|δz(Gv1 · · ·Gvd)mf − δz̃(Gv1 · · ·Gvd)mf | =
∣∣∣∣
∫
ρ(dx)f(xm)−

∫
ρ̃(dx)f(xm)

∣∣∣∣ .

In the present case we find the following expressions for the one-sided conditional
distributions, for each x ∈ S, ` ∈ {1, . . . ,m}, k ∈ {1, . . . , d},

γ(0,v)
x (A) = δzv(A),

γ̃(0,v)
x (A) = δz̃v(A),

γ(`,vk)
x (A) = γ̃(`,vk)

x (A) = ηvk(x
{v1,...,vk−1}
` x

{vk,...,vd}
`−1 , A).
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As before, for each i, j ∈ I we have

Cij =

{
Rvv′ if i = (`, v), j = (`′, v′) for 0 ≤ τ(i)− τ(j) ≤ d− 1,

0 otherwise,

and for each j ∈ I we now have

bj ≤
{

2 if τ(j) = 0,

0 otherwise.

By Theorem 2.12 we find

‖δz(Gv1 · · ·Gvd)m − δz̃(Gv1 · · ·Gvd)m‖J ≤
∑

v∈J

∑

j∈I

D(m,v)j bj ≤ 2
∑

v∈J

∑

v′∈V

D(m,v)(0,v′).

Proceeding as above, by Proposition B.1 we have

max
i∈I

∑

j∈I

Cij ≤ c′ < 1,

from which it follows that

max
v∈V

∑

v′∈V

D(m,v)(0,v′) =
∞∑

n=m

Cn
(m,v)(0,v′) ≤

c′m

1− c′ ,

where we have used that Cij 6= 0 only if 0 ≤ τ(i)− τ(j) ≤ d− 1. We finally obtain

‖δz(Gv1 · · ·Gvd)m − δz̃(Gv1 · · ·Gvd)m‖J = 2 card J
c′m

1− c′ . (B.3)

As the choice of z, z̃ ∈ X is arbitrary, together (B.2) and (B.3) yield the statement
of the Theorem.

The proof of Theorem 5.4 follows as an immediate consequence of Theorem B.3.

Proof of Theorem 5.4. In Theorem B.3, choose c = 1
2

and c′ = 1
4
. Let

(1− ε2) eβ(r+1) ∆

1− c = c′,

from which we get β = 1
r+1

log 1
8∆(1−ε2)

> 0, as ε > ε0 :=
√

1− 1
8∆

. As Corr(ν, β) ≤ 1
4

by assumption, we find

Corr(ν, β) + (1− ε2)eβ(r+1)∆ ≤ 1

4
+ c′(1− c) =

3

8
≤ 1

2
≡ c.
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Hence, both assumptions in Theorem B.3 hold, and for each n ≥ 1 and J ⊆ V we get

‖Fnν − F̃nν‖J ≤ 2 card J

(
8

3
e−β(2−r) (1− ε2∆) e−βb +

4

3

(
1

4

)m)

≤ α

2
card J

(
e−βb + e−(log 4)m

)

≤ α card J e−γmin{b,m},

where

α := 4

(
8

3
(8∆(1− ε2))

2−r
r+1 (1− ε2∆) +

4

3

)
,

γ := min

{
1

r + 1
log

1

8∆(1− ε2)
, log 4

}
.
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Appendix C

Comparison theorems for Gibbs
measures: proofs

The first part of this appendix (Sections C.1-C.5) is devoted to providing the proofs for
the generalized comparison theorems introduced in Chapter 6 (Theorem 6.4, Corollary
6.8, and Theorem 6.12). The second part of this appendix (Sections C.6) is devoted to
developing the application of the generalized comparison theorems to block particle
filters (Theorem 6.13).

C.1 General comparison principle

The proof of Theorem 6.4 is derived from a general comparison principle for Markov
chains that will be formalized in this section. The basic idea behind this principle
is to consider two transition kernels G and G̃ on S such that ρG = G and ρ̃G̃ = ρ̃.
One should think of G as the transition kernel of a Markov chain that admits ρ as
its invariant measure, and similarly for G̃. The comparison principle of this section
provides a general method to bound the difference between the invariant measures ρ
and ρ̃ in terms of the transition kernels G and G̃. In the following sections, we will
apply this principle to a specific choice of G and G̃ that is derived from the coupled
update rule.

We begin by introducing a standard notion in the analysis of high-dimensional
Markov chains, cf. [23] (note that our indices are reversed as compared to the defini-
tion in [23]).

Definition C.1. (Vij)i,j∈I is called a Wasserstein matrix for a transition kernel G
on S if

oscjGf ≤
∑

i∈I

oscif Vij

for every j ∈ I and bounded and measurable quasilocal function f .

We now state our general comparison principle.
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Proposition C.2. Let G and G̃ be transition kernels on S such that ρG = ρ and
ρ̃G̃ = ρ̃, and let Qx be a coupling between the measures Gx and G̃x for every x ∈ S.
Assume that G is quasilocal, and let V be a Wasserstein matrix for G. Then we have

|ρf − ρ̃f | ≤
∑

i,j∈I

oscif N
(n)
ij

∫ ∗
ρ̃(dx)Qxηj +

∑

i,j∈I

oscif V
n
ij (ρ⊗ ρ̃)ηj,

where we defined

N (n) :=
n−1∑

k=0

V k,

for any bounded and measurable quasilocal function f and n ≥ 1.

Theorem 6.4 will be derived from this result. Roughly speaking, we will design
the transition kernel G such that V = I − W + R is a Wasserstein matrix; then
assumption (6.1) implies that the second term in Proposition C.2 vanishes as n→∞,
and the result of Theorem 6.4 reduces to some matrix algebra (as will be explained
below, however, a more complicated argument is needed to obtain Theorem 6.4 in
full generality).

To prove Proposition C.2 we require a simple lemma.

Lemma C.3. Let Q be a coupling of probability measures µ, ν on S. Then

|µf − νf | ≤
∑

i∈I

oscif Qηi

for every bounded and measurable quasilocal function f .

Proof. Let J ∈ I. Enumerate its elements arbitrarily as J = {j1, . . . , jr}, and define
Jk = {j1, . . . , jk} for 1 ≤ k ≤ r and J0 = ∅. Then we can evidently estimate

|fJx (z)− fJx (z̃)| ≤
r∑

k=1

|fJx (zJk z̃J\Jk)− fJx (zJk−1 z̃J\Jk−1)| ≤
∑

j∈J

oscjf ηj(zj, z̃j).

As f is quasilocal, we can let J ↑ I to obtain

|f(z)− f(z̃)| ≤
∑

i∈I

oscif ηi(zi, z̃i).

The result follows readily as |µf − νf | ≤
∫
|f(z)− f(z̃)|Q(dz, dz̃).

We now proceed to the proof of Proposition C.2.

Proof of Proposition C.2. We begin by writing

|ρf − ρ̃f | = |ρGnf − ρ̃G̃nf |

≤
n−1∑

k=0

|ρ̃G̃n−k−1Gk+1f − ρ̃G̃n−kGkf |+ |ρGnf − ρ̃Gnf |

=
n−1∑

k=0

|ρ̃GGkf − ρ̃G̃Gkf |+ |ρGnf − ρ̃Gnf |.
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As G is assumed quasilocal, Gkf is quasilocal, and thus Lemma C.3 yields

|ρ̃GGkf − ρ̃G̃Gkf | ≤
∫
ρ̃(dx) |GxG

kf − G̃xG
kf |

≤
∫ ∗

ρ̃(dx)
∑

j∈I

oscjG
kf Qxηj

≤
∑

i,j∈I

oscif V
k
ij

∫ ∗
ρ̃(dx)Qxηj.

Similarly, as ρ⊗ ρ̃ is a coupling of ρ, ρ̃, we obtain by Lemma C.3

|ρGnf − ρ̃Gnf | ≤
∑

j∈I

oscjG
nf (ρ⊗ ρ̃)ηj ≤

∑

i,j∈I

oscif V
n
ij (ρ⊗ ρ̃)ηj.

Thus the proof is complete.

C.2 Gibbs samplers

To put Proposition C.2 to good use, we must construct transition kernels G and G̃
for which ρ and ρ̃ are invariant, and that admit tractable estimates for the quantities
in the comparison theorem in terms of the coupled update rule (γJ , γ̃J , QJ , Q̂J)J∈J
and the weights (wJ)J∈J. To this end, we will use a standard construction called the
Gibbs sampler : in each time step, we draw a region J ∈ J with probability vJ ∝ wJ ,
and then apply the transition kernel γJ to the current configuration. This readily
defines a transition kernel G for which ρ is G-invariant (as ρ is γJ -invariant for every
J ∈ J). The construction for G̃ is identical. As will be explained below, this is not
the most natural construction for the proof of our main result; however, it will form
the basis for further computations.

We fix throughout this section a coupled update rule (γJ , γ̃J , QJ , Q̂J)J∈J for (ρ, ρ̃)
and weights (wJ)J∈J satisfying the assumptions of Theorem 6.4. Let v = (vJ)J∈J be a
sequence of nonnegative weights such that

∑
J vJ ≤ 1. We define the Gibbs samplers

Gv
x(A) :=

(
1−

∑

J∈J

vJ

)
1A(x) +

∑

J∈J

vJ

∫
1A(zJxI\J) γJx (dzJ),

G̃v
x(A) :=

(
1−

∑

J∈J

vJ

)
1A(x) +

∑

J∈J

vJ

∫
1A(zJxI\J) γ̃Jx (dzJ).

Evidently Gv and G̃v are transition kernels on S, and ρGv = ρ and ρ̃G̃v = ρ̃ by
construction. To apply Proposition C.2, we must establish some basic properties.

Lemma C.4. Assume that γJ is quasilocal for every J ∈ J. Then Gv is quasilocal.

Proof. Let f : S→ S be a bounded and measurable quasilocal function. It evidently
suffices to show that γJfJ is quasilocal for every J ∈ J. To this end, let us fix J ∈ J,
x, z ∈ S, and J1, J2, . . . ∈ I such that J1 ⊆ J2 ⊆ · · · and

⋃
i Ji = I. Then we have

γJ
zJixI\Ji

i→∞−−−→ γJz setwise
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as γJ is quasilocal. On the other hand, we have

fJ
zJixI\Ji

i→∞−−−→ fJz pointwise

as f is quasilocal. Thus by [43, Proposition 18, p. 270] we obtain

γJ
zJixI\Ji

fJ
zJixI\Ji

i→∞−−−→ γJz f
J
z .

As the choice of x, z and (Ji)i≥1 is arbitrary, the result follows.

Lemma C.5. Assume that γJ is quasilocal for every J ∈ J, and define

W v
ij := 1i=j

∑

J∈J:i∈J

vJ ,

Rv
ij := sup

x,z∈S:
xI\{j}=zI\{j}

1

ηj(xj, zj)

∑

J∈J:i∈J

vJ Q
J
x,zηi.

Then V v = I −W v +Rv is a Wasserstein matrix for Gv.

Proof. Let f : S → S be a bounded and measurable quasilocal function, and let
x, z ∈ S be configurations that differ at a single site card{i ∈ I : xi 6= zi} = 1. Note
that

γJx f
J
x = (γJx ⊗ δxI\J )f, γJz f

J
z = (γJz ⊗ δzI\J )f.

As QJ
x,z is a coupling of γJx and γJz by construction, the measure QJ

x,z ⊗ δxI\J ⊗ δzI\J
is a coupling of γJx ⊗ δxI\J and γJz ⊗ δzI\J . Thus Lemma C.3 yields

|γJx fJx − γJz fJz | ≤
∑

i∈I

oscif (QJ
x,z ⊗ δxI\J ⊗ δzI\J )ηi

=
∑

i∈J

oscif Q
J
x,zηi +

∑

i∈I\J

oscif ηi(xi, zi).

In particular, we obtain

|Gvf(x)−Gvf(z)| ≤
(

1−
∑

J∈J

vJ

)
|f(x)− f(z)|+

∑

J∈J

vJ |γJx fJx − γJz fJz |

≤
(

1−
∑

J∈J

vJ

)∑

i∈I

oscif ηi(xi, zi) +
∑

J∈J

vJ

(∑

i∈J

oscif Q
J
x,zηi+

∑

i∈I\J

oscif ηi(xi, zi)

)

=
∑

i∈I

oscif {1−W v
ii} ηi(xi, zi) +

∑

i∈I

oscif
∑

J∈J:i∈J

vJ Q
J
x,zηi.

Now suppose that xI\{j} = zI\{j} (and x 6= z). Then by definition

∑

J∈J:i∈J

vJ Q
J
x,zηi ≤ Rv

ij ηj(xj, vj),
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and we obtain

|Gvf(x)−Gvf(z)|
ηj(xj, zj)

≤ oscjf {1−W v
jj}+

∑

i∈I

oscif R
v
ij.

Thus V v = I −W v +Rv satisfies Definition C.1.

Using Lemmas C.4 and C.5, we can now apply Proposition C.2.

Corollary C.6. Assume that γJ is quasilocal for every J ∈ J. Then

|ρf − ρ̃f | ≤
∑

i,j∈I

oscif N
v(n)
ij avj +

∑

i,j∈I

oscif (I −W v +Rv)nij (ρ⊗ ρ̃)ηj

for every n ≥ 1 and bounded and measurable quasilocal function f , where

Nv(n) :=
n−1∑

k=0

(I −W v +Rv)k

and the coefficients (avj )j∈I are defined by avj :=
∑

J∈J:j∈J vJ
∫ ∗
ρ̃(dx) Q̂J

xηj.

Proof. Let G = Gv, G̃ = G̃v, V = I −W v + Rv in Proposition C.2. The requisite
assumptions are verified by Lemmas C.4 and C.5, and it remains to show that there
exists a coupling Qx of Gx and G̃x such that

∫ ∗
ρ̃(dx)Qxηj ≤ aj for every j ∈ I. But

choosing

Qxg :=

(
1−

∑

J∈J

vJ

)
g(x, x) +

∑

J∈J

vJ

∫
Q̂J
x(dzJ , dz̃J) g(zJxI\J , z̃JxI\J),

it is easily verified that Qx satisfies the necessary properties.

In order for the construction of the Gibbs sampler to make sense, the weights vJ
must be probabilities. This imposes the requirement

∑
J vJ ≤ 1. If we were to assume

that
∑

J wJ ≤ 1, we could apply Corollary C.6 with vJ = wJ . Then assumption (6.1)
guarantees that the second term in Corollary C.6 vanishes as n→∞, which yields

|ρf − ρ̃f | ≤
∑

i,j∈I

oscif Nij aj with N :=
∞∑

k=0

(I −W +R)k.

The proof of Theorem 6.4 would now be complete after we establish the identity

N =
∞∑

k=0

(I −W +R)k =
∞∑

k=0

(W−1R)kW−1 = DW−1.

This straightforward matrix identity will be proved in the next section. The assump-
tion that the weights wJ are summable is restrictive, however, when I is infinite:
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in Theorem 6.4 we only assume that Wii ≤ 1 for all i, so we evidently cannot set
vJ = wJ .

When the weights wj are not summable, it is not natural to interpret them as
probabilities. In this setting, a much more natural construction would be to consider a
continuous time counterpart of the Gibbs sampler called Glauber dynamics. To define
this process, one attaches to each region J ∈ J an independent Poisson process with
rate wJ , and applies the transition kernel γJ at every jump time of the corresponding
Poisson process. Thus wJ does not represent the probability of selecting the region J
in one time step, but rather the frequency with which region J is selected in continuous
time. Once this process has been defined, one would choose the transition kernel G to
be the transition semigroup of the continuous time process on any fixed time interval.
Proceeding with this construction we expect, at least formally, to obtain Theorem
6.4 under the stated assumptions.

Unfortunately, there are nontrivial technical issues involved in implementing this
approach: it is not evident a priori that the continuous time construction defines a
well-behaved Markov semigroup, so that it is unclear when the above program can
be made rigorous. The existence of a semigroup has typically been established under
more restrictive assumptions than we have imposed in the present setting [36]. In
order to circumvent such issues, we will proceed by an alternate route. Formally, the
Glauber dynamics can be obtained by an appropriate scaling limit of discrete time
Gibbs samplers. We will also utilize this scaling, but instead of applying Proposition
C.2 to the limiting dynamics we will take the scaling limit directly in Corollary C.6.
Thus, while our intuition comes from the continuous time setting, we avoid some
technicalities inherent in the construction of the limit dynamics. Instead, we now
face the problem of taking limits of powers of infinite matrices. The requisite matrix
algebra will be worked out in the following section.

Remark C.7. Let us briefly sketch how the previous results can be sharpened to obtain
a nonlinear comparison theorem that could lead to sharper bounds in some situations.
Assume for simplicity that

∑
J wJ ≤ 1. Then V = I−W +R is a Wasserstein matrix

for G by Lemma C.5. Writing out the definitions, this means δ(Gf) ≤ δ(f)V where

(βV )j =
∑

i∈I

βi sup
x,z∈S:

xI\{j}=zI\{j}

{
1i=j

(
1−

∑

J :i∈J

wJ

)
+

1

ηj(xj, zj)

∑

J :i∈J

wJ Q
J
x,zηi

}

(here we interpret β = (βi)i∈I and δ(f) = (oscif)i∈I as row vectors). However, from
the proof of Lemma C.5 we even obtain the sharper bound δ(Gf) ≤ V[δ(f)] where

V[β]j := sup
x,z∈S:

xI\{j}=zI\{j}

∑

i∈I

βi

{
1i=j

(
1−

∑

J :i∈J

wJ

)
+

1

ηj(xj, zj)

∑

J :i∈J

wJ Q
J
x,zηi

}

is defined with the supremum over configurations outside the sum. The nonlinear
operator V can now be used much in the same way as the Wasserstein matrix V . In

166



particular, following the identical proof as for Proposition C.2, we immediately obtain

|ρf − ρ̃f | ≤
∑

j∈I

n−1∑

k=0

Vk[δ(f)]j

∫ ∗
ρ̃(dx)Qxηj +

∑

j∈I

Vn[δ(f)]j (ρ⊗ ρ̃)ηj,

where Vk denotes the kth iterate of the nonlinear operator V. Proceeding along these
lines, one can develop nonlinear comparison theorems under Dobrushin-Shlosman type
conditions (see the discussion in Section 6.3.2). The nonlinear expressions are some-
what difficult to handle, however, and we do not develop this idea further in this
thesis.

C.3 Proof of Theorem 6.4

Throughout this section, we work under the assumptions of Theorem 6.4. The main
idea of the proof is the following continuous scaling limit of Corollary C.6.

Proposition C.8. Let t > 0. Define the matrices

N :=
∞∑

k=0

(I −W +R)k, V [t] :=
∞∑

k=0

tke−t

k!
(I −W +R)k.

Then we have, under the assumptions of Theorem 6.4,

|ρf − ρ̃f | ≤
∑

i,j∈I

oscif Nij aj +
∑

i,j∈I

oscif V
[t]
ij (ρ⊗ ρ̃)ηj

for every bounded and measurable quasilocal function f such that oscif < ∞ for all
i ∈ I.

Proof. Without loss of generality, we will assume throughout the proof that f is
a local function (so that only finitely many oscif are nonzero). The extension to
quasilocal f follows readily by applying the local result to fJx and letting J ↑ I as in
the proof of Lemma C.3.

As the cover J is at most countable (because I is countable), we can enumerate
its elements arbitrarily as J = {J1, J2, . . .}. Define the weights vr = (vrJ)J∈J as

vrJ :=

{
wJ when J = Jk for k ≤ r,
0 otherwise.

For every r ∈ N, the weight vector uvr evidently satisfies
∑

J uv
r
J ≤ 1 for all u > 0

sufficiently small (depending on r). The main idea of the proof is to apply Corollary
C.6 to the weight vector v = (t/n)vr, then let n→∞, and finally r →∞.

Let us begin by considering the second term in Corollary C.6. We can write

(I −W (t/n)vr +R(t/n)vr)n =

((
1− t

n

)
I +

t

n
(I −W vr +Rvr)

)n

=
n∑

k=0

(
n

k

)(
1− t

n

)n−k(
t

n

)k
(I −W vr +Rvr)k

= E (I −W vr +Rvr)Zn ,
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where we defined the Binomial random variables Zn ∼ Bin(n, t/n). The random
variables Zn converge weakly as n→∞ to the Poisson random variable Z∞ ∼ Pois(t).
To take the limit of the above expectation, we need a simple estimate that will be
useful in the sequel.

Lemma C.9. Let (cj)j∈I be any nonnegative vector. Then
∑

j∈I

(I −W vr +Rvr)kij cj ≤ 2k max
0≤`≤k

∑

j∈I

(I −W +R)`ij cj

for every i ∈ I and k ≥ 0.

Proof. As Rv is nondecreasing in v we obtain the elementwise estimate

I −W vr +Rvr ≤ I +R ≤ I + (I −W +R),

where we have used Wii ≤ 1. We therefore have

∑

j∈I

(I −W vr +Rvr)kij cj ≤
∑

j∈I

(I + {I −W +R})kij cj =
k∑

`=0

(
k

`

)∑

j∈I

(I −W +R)`ij cj,

and the proof is easily completed.

Define the random variables

Xn = g(Zn) with g(k) =
∑

i,j∈I

oscif (I −W vr +Rvr)kij (ρ⊗ ρ̃)ηj.

Then Xn → X∞ weakly by the continuous mapping theorem. On the other hand,
applying Lemma C.9 with cj = (ρ ⊗ ρ̃)ηj we estimate g(k) ≤ C2k for some finite
constant C < ∞ and all k ≥ 0, where we have used assumption (6.1) and that f is
local. As

lim sup
u→∞

sup
n≥1

E(2Zn12Zn≥u) ≤ lim
u→∞

u−1 sup
n≥1

E 4Zn = lim
u→∞

u−1e3t = 0,

it follows that the random variables (Xn)n≥1 are uniformly integrable. We therefore
conclude that EXn → EX∞ as n→∞ (cf. [31, Lemma 4.11]). In particular,

lim
n→∞

∑

i,j∈I

oscif (I −W (t/n)vr +R(t/n)vr)nij (ρ⊗ ρ̃)ηj =
∑

i,j∈I

oscif V
r[t]
ij (ρ⊗ ρ̃)ηj,

where

V r[t] =
∞∑

k=0

tke−t

k!
(I −W vr +Rvr)k.

We now let r → ∞. Note that W vr ↑ W and Rvr ↑ R elementwise and, arguing as
in the proof of Lemma C.9, we have I −W vr +Rvr ≤ I + (I −W +R) elementwise
where
∞∑

k=0

∑

i,j∈I

tke−t

k!
oscif {I+(I−W+R)}kij (ρ⊗ρ̃)ηj ≤ et sup

`≥0

∑

i,j∈I

oscif (I−W+R)`ij (ρ⊗ρ̃)ηj
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is finite by assumption (6.1) and as f is local. We therefore obtain

lim
r→∞

lim
n→∞

∑

i,j∈I

oscif (I −W (t/n)vr +R(t/n)vr)nij (ρ⊗ ρ̃)ηj =
∑

i,j∈I

oscif V
[t]
ij (ρ⊗ ρ̃)ηj

by dominated convergence. That is, the second term in Corollary C.6 with v =
(t/n)vr converges as n → ∞ and r → ∞ to the second term in statement of the
present result.

It remains to establish the corresponding conclusion for the first term in Corollary
C.6, which proceeds much along the same lines. We begin by noting that

1

n

n−1∑

k=0

(I −W (t/n)vr +R(t/n)vr)k =
1

n

n−1∑

k=0

((
1− t

n

)
I +

t

n
(I −W vr +Rvr)

)k

=
1

n

n−1∑

k=0

k∑

`=0

(
k

`

)(
1− t

n

)k−`(
t

n

)`
(I −W vr +Rvr)`

=
n−1∑

`=0

p
(n)
` (I −W vr +Rvr)`,

where we have defined

p
(n)
` =

1

n

n−1∑

k=`

(
k

`

)(
1− t

n

)k−`(
t

n

)`
=

1

t

∫ t

`t/n

(bsn/tc
`

)(
1− t

n

)bsn/tc−`(
t

n

)`
ds

for ` < n. An elementary computation yields

n−1∑

`=0

p
(n)
` = 1 and p

(n)
`

n→∞−−−→ p
(∞)
` =

1

t

∫ t

0

s`e−s

`!
ds.

We can therefore introduce {0, 1, . . .}-valued random variables Yn with P(Yn = `) =

p
(n)
` for ` < n, and we have shown above that Yn → Y∞ weakly and that

1

n

n−1∑

k=0

(I −W (t/n)vr +R(t/n)vr)k = E (I −W vr +Rvr)Yn .

The first term in Corollary C.6 with v = (t/n)vr can be written as

∑

i,j∈I

oscif
n−1∑

k=0

(I −W (t/n)vr +R(t/n)vr)kij a
(t/n)vr

j = tEh(Yn),

where we have defined

h(k) =
∑

i,j∈I

oscif (I −W vr +Rvr)kij a
vr

j .
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We now proceed essentially as above. We can assume without loss of generality that

sup
`≥0

∑

i,j∈I

oscif (I −W +R)`ij aj <∞,

as otherwise the right-hand side in the statement of the present result is infinite and
the estimate is trivial. It consequently follows from Lemma C.9 that h(k) ≤ C2k for
some finite constant C <∞ and all k ≥ 0. A similar computation as was done above
shows that (h(Yn))n≥0 is uniformly integrable, and therefore Eh(Yn)→ Eh(Y∞). In
particular, the first term in Corollary C.6 with v = (t/n)vr converges as n→∞ to

lim
n→∞

∑

i,j∈I

oscif
n−1∑

k=0

(I −W (t/n)vr +R(t/n)vr)kij a
(t/n)vr

j =
∑

i,j∈I

oscif N
r
ij a

vr

j ,

where

N r =
∞∑

k=0

∫ t

0

ske−s

k!
ds (I −W vr +Rvr)k.

Similarly, letting r → ∞ and repeating exactly the arguments used above for the
second term of Corollary C.6, we obtain by dominated convergence

lim
r→∞

lim
n→∞

∑

i,j∈I

oscif
n−1∑

k=0

(I −W (t/n)vr +R(t/n)vr)kij a
(t/n)vr

j =
∑

i,j∈I

oscif Ñij aj,

where

Ñ =
∞∑

k=0

∫ t

0

ske−s

k!
ds (I −W +R)k.

To conclude, we have shown that applying Corollary C.6 to the weight vector v =
(t/n)vr and taking the limit as n→∞ and r →∞, respectively, yields the estimate

|ρf − ρ̃f | ≤
∑

i,j∈I

oscif Ñij aj +
∑

i,j∈I

oscif V
[t]
ij (ρ⊗ ρ̃)ηj.

It remains to note that tke−t/k! is the density of a Gamma distribution (with shape
k + 1 and scale 1), so

∫ t
0
ske−s/k! ds ≤ 1 and thus Ñ ≤ N elementwise.

We can now complete the proof of Theorem 6.4.

Proof of Theorem 6.4. Once again, we will assume without loss of generality that f
is a local function (so that only finitely many oscif are nonzero). The extension to
quasilocal f follows readily by localization as in the proof of Lemma C.3.
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We begin by showing that the second term in Proposition C.8 vanishes as t→∞.
Indeed, for any n ≥ 0, we can evidently estimate the second term as

∞∑

k=0

tke−t

k!

∑

i,j∈I

oscif (I −W +R)kij (ρ⊗ ρ̃)ηj

≤ sup
`≥0

∑

i,j∈I

oscif (I −W +R)`ij (ρ⊗ ρ̃)ηj

n∑

k=0

tke−t

k!

+ sup
`>n

∑

i,j∈I

oscif (I −W +R)`ij (ρ⊗ ρ̃)ηj.

By assumption (6.1) and as f is local, the two terms on the right vanish as t → ∞
and n→∞, respectively. Thus second term in Proposition C.8 vanishes as t→∞.

We have now proved the estimate

|ρf − ρ̃f | ≤
∑

i,j∈I

oscif Nij aj.

To complete the proof of Theorem 6.4, it remains to establish the identity N = DW−1.
This is an exercise in matrix algebra. By the definition of the matrix product, we
have

(I −W +R)p =

p∑

k=0

∑

n0,...,nk≥0
n0+···+nk=p−k

(I −W )nkR · · · (I −W )n1R(I −W )n0 .

We can therefore write

∞∑

p=0

(I −W +R)p

=
∞∑

k=0

∑

n0,...,nk≥0

∞∑

p=0

1n0+···+nk=p−k1k≤p(I −W )nkR · · · (I −W )n1R(I −W )n0

=
∞∑

k=0

∑

n0,...,nk≥0

(I −W )nkR · · · (I −W )n1R(I −W )n0

=
∞∑

k=0

(W−1R)kW−1,

where we have used that W−1 =
∑∞

n=0(I −W )n as W is diagonal with 0 < Wii ≤
1.

C.4 Proof of Corollary 6.8

Note that supiWii < ∞ in all parts of Corollary 6.8 (either by assumption or as
card I <∞). Moreover, it is easily seen that all parts of Corollary 6.8 as well as the
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conclusion of Theorem 6.4 are unchanged if all the weights are multiplied by the same
constant. We may therefore assume without loss of generality that supiWii ≤ 1.

Next, we note that as ρ and ρ̃ are tempered, we have

sup
i∈I

(ρ⊗ ρ̃)ηi ≤ sup
i∈I

ρ ηi( · , x?i ) + sup
i∈I

ρ̃ ηi(x
?
i , · ) <∞

by the triangle inequality. To verify (6.1), it therefore suffices to show that

lim
k→∞

∑

j∈I

(I −W +R)kij = 0 for all i ∈ I. (C.1)

We now proceed to verify this condition in the different cases of Corollary 6.8.

Proof of Corollary 6.8(1). It was shown at the end of the proof of Theorem 6.4 that

∞∑

k=0

(I −W +R)k =
∞∑

k=0

(W−1R)kW−1 = DW−1.

As W−1 has finite entries, D <∞ certainly implies that (I−W +R)k → 0 as k →∞
elementwise. But this trivially yields (C.1) when card I <∞.

Proof of Corollary 6.8(2). Note that we can write

D =
∞∑

k=0

(W−1R)k =
n−1∑

p=0

(W−1R)p
∞∑

k=0

(W−1R)nk.

Therefore, if R <∞ and ‖(W−1R)n‖ < 1, we can estimate

‖D‖ ≤
∥∥∥∥∥
n−1∑

p=0

(W−1R)p

∥∥∥∥∥
∞∑

k=0

‖(W−1R)n‖k <∞.

Thus D <∞ and we conclude by the previous part.

Proof of Corollary 6.8(3). We give a simple probabilistic proof (a more complicated
matrix-analytic proof could be given along the lines of [14, Theorem 3.21]). Let
P = W−1R. As ‖P‖∞ < 1, the infinite matrix P is substochastic. Thus P is the
transition probability matrix of a killed Markov chain (Xn)n≥0 such that P(Xn =
j|Xn−1 = i) = Pij and P(Xn is dead|Xn−1 = i) = 1−∑j Pij (once the chain dies, it
stays dead). Denote by ζ = inf{n : Xn is dead} the killing time of the chain. Then
we obtain

P(ζ > n|X0 = i) = P(Xn is not dead|X0 = i) =
∑

j∈I

P n
ij ≤ ‖P n‖∞ ≤ ‖P‖n∞.

Therefore, as ‖P‖∞ < 1, we find by letting n→∞ that P(ζ =∞|X0 = i) = 0. That
is, the chain dies eventually with unit probability for any initial condition.
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Now define P̃ = I−W +R = I−W +WP . As supiWii ≤ 1, the matrix P̃ is also
substochastic and corresponds to the following transition mechanism. If Xn−1 = i,
then at time n we flip a biased coin that comes up heads with probability Wii. In case
of heads we make a transition according to the matrix P , but in case of tails we leave
the current state unchanged. From this description, it is evident that we can construct
a Markov chain (X̃n)n≥0 with transition matrix P̃ by modifying the chain (Xn)n≥0 as
follows. Conditionally on (Xn)n≥0, draw independent random variables (ξn)n≥0 such
that ξn is geometrically distributed with parameter WXnXn . Now define the process
(X̃n)n≥0 such that it stays in state X0 for the first ξ0 time steps, then is in state X1

for the next ξ1 time steps, etc. By construction, the resulting process is Markov with
transition matrix P̃ . Moreover, as ζ <∞ a.s., we have ζ̃ := inf{n : X̃n is dead} <∞
a.s. also. Thus

lim
n→∞

∑

j∈I

(I −W +R)nij = lim
n→∞

P(ζ̃ > n|X0 = i) = 0

for every i ∈ I. We have therefore established (C.1).

Proof of Corollary 6.8(4). We begin by writing as above

∞∑

k=0

(I −W +R)k =
∞∑

k=0

(W−1R)kW−1 =
∞∑

k=0

W−1(RW−1)k,

where the last identity is straightforward. Arguing as in Corollary 6.8(2), we obtain

Wii

∞∑

k=0

∑

j∈I

(I −W +R)kij =
∑

j∈I

∞∑

k=0

(RW−1)kij ≤
∥∥∥∥∥
∞∑

k=0

(RW−1)k

∥∥∥∥∥
∞

≤
n−1∑

p=0

‖RW−1‖p∞
∞∑

k=0

‖(RW−1)n‖k∞ <∞.

It follows immediately that (C.1) holds.

Proof of Corollary 6.8(5). Note that
∑

j∈I

(RW−1)kij‖ηj‖ ≤ ‖(RW−1)k‖1

∑

j∈I

‖ηj‖ ≤ ‖RW−1‖k1
∑

j∈I

‖ηj‖.

Thus
∑

j ‖ηj‖ <∞ and ‖RW−1‖1 < 1 yield

∞∑

k=0

∑

j∈I

(I −W +R)kij‖ηj‖ = W−1
ii

∞∑

k=0

∑

j∈I

(RW−1)kij‖ηj‖ <∞,

which evidently implies

lim
k→∞

∑

j∈I

(I −W +R)kij(ρ⊗ ρ̃)ηj = 0 for all i ∈ I.

We have therefore established (6.1).
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Proof of Corollary 6.8(6). Let r = sup{m(i, j) : Rij > 0} (which is finite by assump-
tion), and choose β > 0 such that ‖RW−1‖1 < e−βr. Then we can estimate

‖RW−1‖1,βm := sup
j∈I

∑

i∈I

eβm(i,j)(RW−1)ij ≤ eβr‖RW−1‖1 < 1.

As m is a pseudometric, it satisfies the triangle inequality and it is therefore easily
seen that ‖ · ‖1,βm is a matrix norm. In particular, we can estimate

eβm(i,j)(RW−1)nij ≤ ‖(RW−1)n‖1,βm ≤ ‖RW−1‖n1,βm
for every i, j ∈ I. But then

‖(RW−1)n‖∞ = sup
i∈I

∑

j∈I

(RW−1)nij ≤ ‖RW−1‖n1,βm sup
i∈I

∑

j∈I

e−βm(i,j) <∞

for all n. We therefore have ‖RW−1‖∞ < ∞, and we can choose n sufficiently large
that ‖(RW−1)n‖∞ < 1. The conclusion now follows from Corollary 6.8(4).

C.5 Proof of Theorem 6.12

In the case of one-sided local updates, the measure ρ≤k is γJ -invariant for τ(J) = k
(but not for τ(J) < k). The proof of Theorem 6.12 therefore proceeds by induction on
k. In each stage of the induction, we apply the logic of Theorem 6.4 to the partial local
updates (γJ)J∈J:τ(J)=k, and use the induction hypothesis to estimate the remainder
term.

Throughout this section, we work in the setting of Theorem 6.12. Define

I≤k := {i ∈ I : τ(i) ≤ k}, Ik := {i ∈ I : τ(i) = k}.

Note that we can assume without loss of generality that Rij = 0 whenever τ(j) > τ(i).
Indeed, the local update rule γJx does not depend on xj for τ(j) > τ(J), so we can
trivially choose the coupling QJ

x,z for xI\{j} = zI\{j} such that QJ
x,zηi = 0 for all i ∈ J .

On the other hand, the choice Rij = 0 evidently yields the smallest bound in Theorem
6.12. In the sequel, we will always assume that Rij = 0 whenever τ(j) > τ(i).

The key induction step is formalized by the following result.

Proposition C.10. Assume (6.1). Let (βi)i∈I≤k−1
be nonnegative weights such that

|ρ≤k−1g − ρ̃≤k−1g| ≤
∑

i∈I≤k−1

oscig βi

for every bounded measurable quasilocal function g on S≤k−1 so that oscig < ∞ ∀i.
Then

|ρ≤kf − ρ̃≤kf | ≤
∑

j∈I≤k−1

{
oscjf +

∑

i,l∈Ik

oscif Dil (W
−1R)lj

}
βj +

∑

i,j∈Ik

oscif DijW
−1
jj aj

for every bounded measurable quasilocal function f on S≤k so that oscif <∞ ∀i.
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Proof. We fix throughout the proof a bounded and measurable local function f :
S≤k → R such that oscif < ∞ for all i ∈ I≤k. The extension of the conclusion to
quasilocal functions f follows readily by localization as in the proof of Lemma C.3.

We denote by Gv and G̃v the Gibbs samplers as defined in Section C.2. Let
us enumerate the partial cover {J ∈ J : τ(J) = k} as {J1, J2, . . .}, and define the
weights vr as in the proof of Proposition C.8. By the definition of the one-sided local
update rule, ρ≤k is Guvr -invariant and ρ̃≤k is G̃uvr -invariant for every r, u such that∑

J uv
r
J ≤ 1. Thus

|ρ≤kf − ρ̃≤kf | ≤
∑

i,j∈I≤k

oscif N
uvr(n)
ij auv

r

j + |ρ≤k(Guvr)nf − ρ̃≤k(Guvr)nf |

as in the proof of Corollary C.6, with the only distinction that we refrain from using
the Wasserstein matrix to expand the second term in the proof of Proposition C.2.
We now use the induction hypothesis to obtain an improved estimate for the second
term.

Lemma C.11. We can estimate

|ρ≤kg − ρ̃≤kg| ≤
∑

i∈I≤k−1

oscig βi + 3
∑

i∈Ik

oscig (ρ⊗ ρ̃)ηi

for any bounded and measurable quasilocal function g : S≤k → R such that oscig <∞
∀i.
Proof. For any x ∈ S≤k we can estimate

|ρ≤kg − ρ̃≤kg| ≤ |ρ≤k−1ĝx − ρ̃≤k−1ĝx|+ |ρ≤k(g − ĝx)|+ |ρ̃≤k(g − ĝx)|,

where we defined ĝx(z) := g(zI≤k−1xIk). By Lemma C.3 we have

|g(z)− ĝx(z)| ≤
∑

i∈Ik

oscig ηi(zi, xi).

We can therefore estimate using the induction hypothesis and the triangle inequality

|ρ≤kg − ρ̃≤kg| ≤
∑

i∈I≤k−1

oscig βi +
∑

i∈Ik

oscig {ρηi( · , x̃i) + ηi(x̃i, xi) + ρ̃ηi( · , xi)}

for all x, x̃ ∈ S≤k. Now integrate this expression with respect to ρ(dx) ρ̃(dx̃).

To lighten the notation somewhat we will write v = uvr until further notice. Note
that by construction avj = 0 whenever τ(j) < k, while Rv

ij = 0 whenever τ(j) > τ(i)
by assumption. Thus we obtain using Lemma C.11 and Lemma C.5

|ρ≤kf − ρ̃≤kf | ≤
∑

i,j∈Ik

oscif N
v(n)
ij avj + 3

∑

i,j∈Ik

oscif (I −W v +Rv)nij (ρ⊗ ρ̃)ηj

+
∑

i∈I≤k

∑

j∈I≤k−1

oscif (I −W v +Rv)nij βj,
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provided that
∑

i oscif (I −W v +Rv)nij <∞ for all j.
Next, note that as vJ = 0 for τ(J) < k, we have Rv

ij = W v
ij = 0 for i ∈ I≤k−1.

Thus

V v = I −W v +Rv =

(
V̌ v Řv

0 I

)
,

where V̌ v := (V v
ij )i,j∈Ik and Řv := (Rv

ij)i∈Ik,j∈I≤k−1
. In particular,

(I −W v +Rv)n =

(
(V̌ v)n

∑n−1
k=0(V̌ v)kŘv

0 I

)
.

Moreover, as Rv
ij = 0 whenever τ(j) > τ(i), we evidently have (V̌ v)kij = (V v)kij for

i, j ∈ Ik. Substituting into the above expression, we obtain

|ρ≤kf − ρ̃≤kf | ≤
∑

i,j∈Ik

oscif N
v(n)
ij avj + 3

∑

i,j∈Ik

oscif (I −W v +Rv)nij (ρ⊗ ρ̃)ηj

+
∑

j∈I≤k−1

{
oscjf +

∑

i,l∈Ik

oscif N
v(n)
il Rv

lj

}
βj

provided that
∑

i oscif (I−W v +Rv)nij <∞ for all j. But the latter is easily verified
using (6.1) and Lemma C.9, as f is local and oscif <∞ for all i by assumption.

The remainder of the proof now proceeds precisely as in the proof of Proposition
C.8 and Theorem 6.4. We set v = (t/n)vr, let n → ∞ and then r → ∞. The
arguments for the first two terms are identical to the proof of Proposition C.8, while
the argument for the third term is essentially identical to the argument for the first
term. The proof is then completed as in the proof of Theorem 6.4. We leave the
details for the reader.

We now proceed to complete the proof of Theorem 6.12.

Proof of Theorem 6.12. Consider first the case that k− := infi∈I τ(i) > −∞. In this
setting, we say that the comparison theorem holds for a given k ≥ k− if we have

|ρ≤kf − ρ̃≤kf | ≤
∑

i,j∈I≤k

oscif DijW
−1
jj aj

for every bounded measurable quasilocal function f on S≤k such that oscif <∞ ∀i.
We can evidently apply Theorem 6.4 to show that the comparison theorem holds for
k−. We will now use Proposition C.10 to show that if the comparison theorem holds
for k − 1, then it holds for k also. Then the comparison theorem holds for every
k ≥ k− by induction, so the conclusion of Theorem 6.12 holds whenever f is a local
function. The extension to quasilocal f follows readily by localization as in the proof
of Lemma C.3.

We now complete the induction step. When the comparison theorem holds for
k − 1 (the induction hypothesis), we can apply Proposition C.10 with

βi =
∑

j∈I≤k−1

DijW
−1
jj aj.
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This gives

|ρ≤kf − ρ̃≤kf | ≤
∑

j,q∈I≤k−1

∑

i,l∈Ik

oscif Dil (W
−1R)lqDqjW

−1
jj aj

+
∑

i,j∈I≤k−1

oscif DijW
−1
jj aj +

∑

i,j∈Ik

oscif DijW
−1
jj aj

for every bounded measurable quasilocal function f on S≤k so that oscif <∞ ∀i. To
complete the proof, it therefore suffices to show that we have

Dij =
∑

q∈I≤k−1

∑

l∈Ik

Dil (W
−1R)lqDqj for i ∈ Ik, j ∈ I≤k−1.

To see this, note that as Rij = 0 for τ(i) < τ(j), we can write

Dij =
∞∑

p=1

∑

j1,...,jp−1∈I:
τ(j)≤τ(j1)≤···≤τ(jp−1)≤k

(W−1R)ijp−1 · · · (W−1R)j2j1(W−1R)j1j

=
∞∑

p=1

p∑

n=1

∑

l∈Ik

∑

q∈I≤k−1

(W−1R)n−1
il (W−1R)lq(W

−1R)p−nqj

for i ∈ Ik and j ∈ I≤k−1, where we have used that whenever τ(j1) ≤ · · · ≤ τ(jp−1) ≤ k
there exists 1 ≤ n ≤ p such that j1, . . . , jp−n ∈ I≤k−1 and jp−n+1, . . . , jp−1 ∈ Ik.
Rearranging the last expression yields the desired identity for Dij, completing the
proof for the case k− > −∞ (note that in this case the additional assumption (6.2)
was not needed).

We now turn to the case that k− = −∞. Let us say that (βi)i∈I≤k is a k-estimate
if

|ρ≤kg − ρ̃≤kg| ≤
∑

i∈I≤k

oscig βi

for every bounded measurable quasilocal function g on S≤k such that oscig < ∞ ∀i.
Then the conclusion of Proposition C.10 can be reformulated as follows: if (βi)i∈I≤k−1

is a (k − 1)-estimate, then (β′i)i∈I≤k is a k-estimate with β′i = βi for i ∈ I≤k−1 and

β′i =
∑

j∈I≤k−1

∑

l∈Ik

Dil (W
−1R)lj βj +

∑

j∈Ik

DijW
−1
jj aj

for i ∈ Ik. We can therefore repeatedly apply Proposition C.10 to extend an initial
estimate. In particular, if we fix k ∈ Z and n ≥ 1, and if (βi)i∈I≤k−n is a (k − n)-
estimate, then we can obtain a k-estimate (β′i)i∈I≤k by iterating Proposition C.10 n
times. We claim that

β′i =
k−r∑

s=k−n+1

{ ∑

j∈I≤k−n

∑

l∈Is

Dil (W
−1R)lj βj +

∑

j∈Is

DijW
−1
jj aj

}
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for 0 ≤ r ≤ n − 1 and i ∈ Ik−r. To see this, we proceed again by induction. As
(βi)i∈I≤k−n is a (k − n)-estimate, the expression is valid for r = n− 1 by Proposition
C.10. Now suppose the expression is valid for all u < r ≤ n− 1. Then we obtain

β′i =
∑

j∈I≤k−n

∑

l∈Ik−u

Dil (W
−1R)lj βj +

∑

j∈Ik−u

DijW
−1
jj aj

+
k−u−1∑

s=k−n+1

∑

j∈Is

∑

l∈Ik−u

s∑

t=k−n+1

∑

q∈I≤k−n

∑

p∈It

Dil (W
−1R)lj Djp (W−1R)pq βq

+
k−u−1∑

s=k−n+1

∑

j∈Is

∑

l∈Ik−u

s∑

t=k−n+1

∑

q∈It

Dil (W
−1R)lj DjqW

−1
qq aq

for i ∈ Ik−u by Proposition C.10. Rearranging the sums yields

β′i =
∑

j∈I≤k−n

∑

l∈Ik−u

Dil (W
−1R)lj βj +

∑

j∈Ik−u

DijW
−1
jj aj

+
k−u−1∑

t=k−n+1

{ ∑

q∈I≤k−n

∑

p∈It

D̄ip (W−1R)pq βq +
∑

p∈It

D̄ipW
−1
pp ap

}
,

for i ∈ Ik−u, where we have defined

D̄ij :=
t−1∑

`=s

∑

q∈I`

∑

l∈It

Dil (W
−1R)lqDqj

whenever i ∈ It and j ∈ Is for s < t. But as Dqj = 0 when τ(q) < τ(j), we have

D̄ij =
∑

q∈I≤t−1

∑

l∈It

Dil (W
−1R)lqDqj = Dij for i ∈ It, j ∈ I≤t−1

using the identity used in the proof for the case k− > −∞, and the claim follows.

We can now complete the proof for the case k− = −∞. It suffices to prove the
theorem for a given local function f (the extension to quasilocal f follows readily
as in the proof of Lemma C.3). Let us therefore fix a K-local function f for some
K ∈ I, and let k = maxi∈K τ(i) and n ≥ 1. By Lemma C.3, we find that (βi)i∈I≤k−n is
trivially a (k−n)-estimate if we set βi = (ρ⊗ ρ̃)ηi for i ∈ I≤k−n. We therefore obtain

|ρf − ρ̃f | ≤
∑

i,j∈I

oscif DijW
−1
jj aj +

∑

i∈I

∑

j∈I≤k−n

oscif Dij (ρ⊗ ρ̃)ηj

from the k-estimate (β′i)i∈I≤k derived above, where we have used that DW−1R ≤ D.
But as f is local and oscif <∞ for all i by assumption, the second term vanishes as
n→∞ by assumption (6.2). This completes the proof for the case k− = −∞.
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C.6 Block particle filter, improved analysis

In the remaining of this appendix we provide the proof of Theorem 6.13. We assume
to work in the same setting introduced in Chapter 4. Recall the following three
recursions:

πµn := Fn · · · F1µ, π̃µn := F̃n · · · F̃1µ, π̂µn := F̂n · · · F̂1µ,

where Fn := CnP, F̃n := CnBP, and F̂n := CnBS
NP. This allows to decompose the

approximation error into two terms, one due to localization and one due to sampling

|||πµn − π̂µn|||J ≤ |||πµn − π̃µn|||J︸ ︷︷ ︸
bias

+ |||π̃µn − π̂µn|||J︸ ︷︷ ︸
variance

by the triangle inequality (see Section 4.5.1). In the proof of Theorem 6.13, each of
the terms on the right will be considered separately. The first term, which quantifies
the bias due to the localization, will be bounded in Section C.6.1. The second term,
which quantifies the sampling variance, will be bounded in Section C.6.2. Combining
these two bounds completes the proof.

C.6.1 Bounding the bias

The goal of this section is to bound the bias term ‖πσn − π̃σn‖J , where we recall the
definition

‖µ− ν‖J := sup
f∈XJ :|f |≤1

|µf − νf |

the local total variation distance on the set of sites J . [Note that ‖µ− ν‖J ≤ K for
some K ∈ R evidently implies |||µ− ν|||J ≤ K; the random measure norm |||·|||J will
be essential to bound the sampling error, but is irrelevant for the bias term.]

Let us first give an informal outline of the ideas behind the proof of the bias
bound. While the filter πσn is itself a high-dimensional distribution (defined on the
set of sites V ), we do not know how to obtain a tractable local update rule for it. We
therefore cannot apply Theorem 6.4 directly. Instead, we will consider the smoothing
distribution

ρ = Pσ(X1, . . . , Xn ∈ · |Y1, . . . , Yn),

defined on the extended set of sites I = {1, . . . , n} × V and configuration space
S = Xn. As (Xv

k , Y
v
k )(k,v)∈I is a Markov random field (cf. Figure 4.1), we can read

off a local update rule for ρ from the model definition. At the same time, as πσn =
Pσ(Xn ∈ · |Y1, . . . , Yn) is a marginal of ρ, we immediately obtain estimates for πσn
from estimates for ρ.

This basic idea relies on the probabilistic definition of the filter as a conditional
distribution of a Markov random field: the filtering recursion (which was only in-
troduced for computational purposes) plays no role in the analysis. The block filter
π̃σn, on the other hand, is defined in terms of a recursion and does not have an
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intrinsic probabilistic interpretation. In order to handle the block filter, we will ar-
tificially cook up a probability measure P̃ on S such that the block filter satisfies
π̃σn = P̃(Xn ∈ · |Y1, . . . , Yn), and set

ρ̃ = P̃(X1, . . . , Xn ∈ · |Y1, . . . , Yn).

This implies in particular that

‖πσn − π̃σn‖J = ‖ρ− ρ̃‖{n}×J ,

and we can now bound the bias term by applying Theorem 6.4.
To apply the comparison theorem we must choose a good cover J. It is here that

the full flexibility of Theorem 6.4, as opposed to the classical comparison theorem,
comes into play. If we were to apply Theorem 6.4 with the singleton cover Js = {{i} :
i ∈ I}, we would recover the result of Theorem 4.2: in this case both the spatial and
temporal interactions must be weak in order to ensure that D =

∑
n(W−1R)n <∞.

To avoid this problem, we work instead with larger blocks in the temporal direction.
That is, our blocks J ∈ J will have the form J = {k + 1, . . . , k + q} × {v} for an
appropriate choice of the block length q. The local update γJx now behaves as q time
steps of an ergodic Markov chain in Xv: the temporal interactions decay geometrically
with q, and can therefore be made arbitrarily small even if the interaction in one time
step is arbitrarily strong. On the other hand, when we increase q there will be more
nonzero terms in the matrix W−1R. We must therefore ultimately tune the block
length q appropriately to obtain the result of Theorem 6.13.

Remark C.12. The approach used here to bound the bias directly using the compar-
ison theorem is different than the one used in Chapter 4, which exploits the recursive
property of the filter. The latter approach has a broader scope, as it does not rely on
the ability to express the approximate filter as the marginal of a random field as we do
above: this could be essential for the analysis of more sophisticated algorithms that do
not admit such a representation. For the purposes of the current analysis, however,
the present approach provides an alternative and somewhat shorter proof that is well
adapted to the analysis of block particle filters.

Remark C.13. The problem under investigation is based on an interacting Markov
chain model, and is therefore certainly dynamical in nature. Nonetheless, our proofs
use Theorem 6.4 and not the one-sided Theorem 6.12. If we were to approximate
the dynamics of the Markov chain Xn itself, it would be much more convenient to
apply Theorem 6.12 as the model is already defined in terms of one-sided conditional
distributions p(x, z)ψ(dz). Unfortunately, when we condition on the observations
Yn, the one-sided conditional distributions take a complicated form that incorporates
all the information in the future observations, whereas conditioning on all variables
outside a block J ∈ J gives rise to relatively tractable expressions. For this reason, the
static “space-time” picture remains the most convenient approach for the investigation
of high-dimensional filtering problems.

We now turn to the details of the proof. We first state the main result of this
section.
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Theorem C.14 (Bias term). Suppose there exist 0 < ε, δ < 1 such that

εqv(xv, zv) ≤ pv(x, zv) ≤ ε−1qv(xv, zv),

δ ≤ qv(xv, zv) ≤ δ−1

for every v ∈ V and x, z ∈ X, where qv : Xv × Xv → R+ is a transition density with
respect to ψv. Suppose also that we can choose q ∈ N and β > 0 such that

c := 3q∆2eβ(q+2r)(1− ε2(∆+1)) + eβ(1− ε2δ2) + eβq(1− ε2δ2)q < 1.

Then we have

‖πσn − π̃σn‖J ≤
2eβr

1− c (1− ε2(q+1)∆) card J e−βd(J,∂K)

for every n ≥ 0, σ ∈ X, K ∈ K and J ⊆ K.

In order to use the comparison theorem, we must have a method to construct
couplings. Before we proceed to the proof of Theorem C.14, we begin by formulating
two elementary results that will provide us with the necessary tools for this purpose.

Lemma C.15. If probability measures µ, ν, γ satisfy µ(A) ≥ αγ(A) and ν(A) ≥
αγ(A) for every measurable set A, then there is a coupling Q of µ, ν such that∫

1x 6=z Q(dx, dz) ≤ 1− α.

Proof. Define µ̃ = (µ− αγ)/(1− α), ν̃ = (ν − αγ)/(1− α), and let

Qf = α

∫
f(x, x) γ(dx) + (1− α)

∫
f(x, z) µ̃(dx) ν̃(dz).

The claim follows readily.

Lemma C.16. Let P1, . . . , Pq be transition kernels on a measurable space T, and
define

µx(dω1, . . . , dωq) = P1(x, dω1)P2(ω1, dω2) · · ·Pq(ωq−1, dωq).

Suppose that there exist probability measures ν1, . . . , νq on T such that Pi(x,A) ≥
ανi(A) for every measurable set A, x ∈ T, and i ≤ q. Then there exists for every
x, z ∈ T a coupling Qx,z of µx and µz such that

∫
1ωi 6=ω′i Qx,z(dω, dω

′) ≤ (1− α)i for
every i ≤ q.

Proof. Define the transition kernels P̃i = (Pi − ανi)/(1− α) and

Q̃if(x, z) = α

∫
f(x′, x′) νi(dx

′) + (1− α) 1x 6=z

∫
f(x′, z′) P̃i(x, dx

′) P̃i(z, dz
′)

+ (1− α) 1x=z

∫
f(x′, x′) P̃i(x, dx

′).

Then Q̃i(x, z, · ) is a coupling of Pi(x, · ) and Pi(z, · ). Now define

Qx,z(dω1, dω
′
1, . . . , dωq, dω

′
q) = Q̃1(x, z, dω1, dω

′
1) · · · Q̃q(ωq−1, ω

′
q−1, dωq, dω

′
q).

The result follows readily once we note that
∫

1x′ 6=z′ Q̃i(x, z, dx
′, dz′) ≤ (1− α) 1x 6=z.
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We can now proceed to the proof of Theorem C.14.

Proof of Theorem C.14. We begin by constructing a measure P̃ that allows to de-
scribe the block filter π̃σn as a conditional distribution, as explained above. We fix the
initial condition σ ∈ X throughout the proof (the dependence of various quantities
on σ is implicit).

To construct P̃, define for K ∈ K and n ≥ 1 the function

hKn (x, z∂K) :=

∫
π̃σn−1(dω)

∏

v∈∂K

pv(xKωV \K , zv).

Evidently hKn is a transition density with respect to
⊗

v∈∂K ψ
v. Let

p̃n(x, z) :=
∏

K∈K

hKn (x, z∂K)
∏

v∈K\∂K

pv(x, zv),

and define P̃nµ(dx′) := ψ(dx′)
∫
p̃n(x, x′)µ(dx). Then P̃nπ̃

σ
n−1 = BPπ̃σn−1 by construc-

tion for every n ≥ 1, as π̃σn−1 is a product measure across blocks. Thus we have

πσn = CnP · · ·C1Pδσ, π̃σn = CnP̃n · · ·C1P̃1δσ.

In particular, the filter and the block filter satisfy the same recursion with different
transition densities p and p̃n. We can therefore interpret the block filter as the filter
corresponding to a time-inhomogeneous Markov chain with transition densities p̃n:
that is, if we set

P̃[(X1, . . . , Xn, Y1, . . . , Yn) ∈ A] :=
∫

1A(x1, . . . , xn, y1, . . . , yn) p̃1(σ, x1)
n∏

k=2

p̃k(xk−1, xk) g(xk, yk)ψ(dxk)ϕ(dyk)

(note that Pσ satisfies the same formula where p̃k is replaced by p), we can write

π̃σn = P̃(Xn ∈ · |Y1, . . . , Yn).

Let us emphasize that the transition densities p̃k and operators P̃k themselves de-
pend on the initial condition σ, which is certainly not the case for the regular filter.
However, since σ is fixed throughout the proof, this is irrelevant for our computations.

From now on we fix n ≥ 1 in the remainder of the proof. Let

ρ = Pσ(X1, . . . , Xn ∈ · |Y1, . . . , Yn), ρ̃ = P̃(X1, . . . , Xn ∈ · |Y1, . . . , Yn).

Then ρ and ρ̃ are probability measures on S = Xn, which is naturally indexed by the
set of sites I = {1, . . . , n} × V (the observation sequence on which we condition is
arbitrary and can be considered fixed throughout the proof). The proof now proceeds
by applying Theorem 6.4 to ρ, ρ̃, the main difficulty being the construction of a
coupled update rule.
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Fix q ≥ 1. We first specify the cover J = {Jvl : 1 ≤ l ≤ dn/qe, v ∈ V } as follows:

Jvl := {(l − 1)q + 1, . . . , lq ∧ n} × {v} for 1 ≤ l ≤ dn/qe, v ∈ V.

We choose the natural local updates γJx (dzJ)=ρ(dzJ |xI\J) and γ̃Jx (dzJ)= ρ̃(dzJ |xI\J),
and postpone the construction of the coupled updates QJ

x,z and Q̂J
x to be done below.

Now note that the cover J is in fact a partition of I; thus Theorem 6.4 yields

‖πσn − π̃σn‖J = ‖ρ− ρ̃‖{n}×J ≤ 2
∑

i∈{n}×J

∑

j∈I

Dij bj

provided that D =
∑∞

k=0 C
k <∞ (cf. Corollary 6.8), where

Cij = sup
x,z∈S:

xI\{j}=zI\{j}

∫
1ωi 6=ω′i Q

J(i)
x,z (dω, dω′), bi = sup

x∈S

∫
1ωi 6=ω′i Q̂

J(i)
x (dω, dω′),

and where we write J(i) for the unique block J ∈ J that contains i ∈ I. To put this
bound to good use, we must introduce coupled updates QJ

x,z and Q̂J
x and estimate Cij

and bj.
Let us fix until further notice a block J = Jvl ∈ J. We will consider first the case

that 1 < l < dn/qe; the cases l = 1, dn/qe will follow subsequently using the identical
proof. Let s = (l − 1)q. Then we can compute explicitly the local update rule

γJx (A) =
∫

1A(xJ) pv(xs, x
v
s+1)

∏s+q
m=s+1 g

v(xvm, Y
v
m)
∏

w∈N(v) p
w(xm, x

w
m+1)ψv(dxvm)

∫
pv(xs, xvs+1)

∏s+q
m=s+1 g

v(xvm, Y
v
m)
∏

w∈N(v) p
w(xm, xwm+1)ψv(dxvm)

using Bayes’ formula, the definition of Pσ (in the same form as the above definition
of P̃), and that pv(x, zv) depends only on xN(v). We now construct couplings QJ

x,z

of γJx and γJz where x, z differ only at the site j = (k, w) ∈ I. We distinguish the
following cases:

1. k = s, w ∈ N(v)\{v};

2. k = s, w = v;

3. k ∈ {s+ 1, . . . , s+ q}, w ∈ ⋃u∈N(v)N(u)\{v};

4. k = s+ q + 1, w ∈ N(v)\{v};

5. k = s+ q + 1, w = v.

It is easily verified by inspection that γJx does not depend on xwk except in one of the
above cases. Thus when j satisfies none of the above conditions, we can set Cij = 0
for i ∈ J .
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Case 1. Note that

γJx (A) ≥

ε2

∫
1A(xJ) qv(xvs , x

v
s+1)

∏s+q
m=s+1 g

v(xvm, Y
v
m)
∏

w∈N(v) p
w(xm, x

w
m+1)ψv(dxvm)

∫
qv(xvs , x

v
s+1)

∏s+q
m=s+1 g

v(xvm, Y
v
m)
∏

w∈N(v) p
w(xm, xwm+1)ψv(dxvm)

,

and the right hand side does not depend on xws for w 6= v. Thus whenever x, z ∈ S
satisfy xI\{j} = zI\{j} for j = (s, w) with w ∈ N(v)\{v}, we can construct a coupling
QJ
x,z using Lemma C.15 such that Cij ≤ 1− ε2 for every i ∈ J .

Case 2. Define the transition kernels on Xv

Pk,x(ω,A) =
∫

1A(xvk) p
v(ωx

V \{v}
k−1 , xvk)

∏s+q
m=k g

v(xvm, Y
v
m)
∏

w∈N(v) p
w(xm, x

w
m+1)ψv(dxvm)

∫
pv(ωx

V \{v}
k−1 , xvk)

∏s+q
m=k g

v(xvm, Y
v
m)
∏

w∈N(v) p
w(xm, xwm+1)ψv(dxvm)

for k = s+ 1, . . . , s+ q. By construction, Pk,x(x
v
k−1, dx

v
k) = γJx (dxvk|xvs+1, . . . , x

v
k−1), so

we are in the setting of Lemma C.16. Moreover, we can estimate

Pk,x(ω,A) ≥ ε2δ2

∫
1A(xvk)

∏s+q
m=k g

v(xvm, Y
v
m)
∏

w∈N(v) p
w(xm, x

w
m+1)ψv(dxvm)

∫ ∏s+q
m=k g

v(xvm, Y
v
m)
∏

w∈N(v) p
w(xm, xwm+1)ψv(dxvm)

,

where the right hand side does not depend on ω. Thus whenever x, z ∈ S satisfy
xI\{j} = zI\{j} for j = (s, v), we can construct a coupling QJ

x,z using Lemma C.16
such that Cij ≤ (1− ε2δ2)k−s for i = (k, v) with k = s+ 1, . . . , s+ q.

Case 3. Fix k ∈ {s+ 1, . . . , s+ q} and u 6= v. Note that

γJx (A) ≥ ε2(∆+1) ×
∫

1A(xJ) pv(xs, x
v
s+1)

∏s+q
m=s+1 g

v(xvm, Y
v
m)
∏

w∈N(v) β
w
m(xm, x

w
m+1)ψv(dxvm)

∫
pv(xs, xvs+1)

∏s+q
m=s+1 g

v(xvm, Y
v
m)
∏

w∈N(v) β
w
m(xm, xwm+1)ψv(dxvm)

where we set βwm(xm, x
w
m+1) = qw(xwm, x

w
m+1) if either m = k or m = k − 1 and w = u,

and βwm(xm, x
w
m+1) = pw(xm, x

w
m+1) otherwise. The right hand side of this expression

does not depend on xuk as the terms qw(xwm, x
w
m+1) for w 6= v cancel in the numerator

and denominator. Thus whenever x, z ∈ S satisfy xI\{j} = zI\{j} for j = (k, u), we
can construct a coupling QJ

x,z using Lemma C.15 such that Cij ≤ 1−ε2(∆+1) for every
i ∈ J .

Case 4. Let u ∈ N(v)\v. Note that

γJx (A) ≥

ε2

∫
1A(xJ) pv(xvs , x

v
s+1)

∏s+q
m=s+1 g

v(xvm, Y
v
m)
∏

w∈N(v) β
w
m(xm, x

w
m+1)ψv(dxvm)

∫
pv(xvs , x

v
s+1)

∏s+q
m=s+1 g

v(xvm, Y
v
m)
∏

w∈N(v) β
w
m(xm, xwm+1)ψv(dxvm)

,

where we set βwm(xm, x
w
m+1) = qw(xwm, x

w
m+1) if m = s + q and w = u, and we set

βwm(xm, x
w
m+1) = pw(xm, x

w
m+1) otherwise. The right hand side does not depend on
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xus+q+1 as the term qu(xus+q, x
u
s+q+1) cancels in the numerator and denominator. Thus

whenever x, z ∈ S satisfy xI\{j} = zI\{j} for j = (s + q + 1, u), we can construct a
coupling QJ

x,z using Lemma C.15 such that Cij ≤ 1− ε2 for every i ∈ J .
Case 5. Define for k = s+ 1, . . . , s+ q the transition kernels on Xv

Pk,x(ω,A) =
∫

1A(xvk) p
v(xs, x

v
s+1)

∏k
m=s+1 g

v(xvm, Y
v
m)
∏

w∈N(v) β
w
m,ω(xm, x

w
m+1)ψv(dxvm)

∫
pv(xs, xvs+1)

∏k
m=s+1 g

v(xvm, Y
v
m)
∏

w∈N(v) β
w
m,ω(xm, xwm+1)ψv(dxvm)

,

where we set βwm,ω(xm, x
w
m+1) = pv(xk, ω) if m = k and w = v, and βwm,ω(xm, x

w
m+1) =

pw(xm, x
w
m+1) otherwise. By construction, Pk,x(x

v
k+1, dx

v
k) = γJx (dxvk|xvk+1, . . . , x

v
s+q),

so we are in the setting of Lemma C.16. Moreover, we can estimate

Pk,x(ω,A) ≥ ε2δ2 ×
∫

1A(xvk) p
v(xs, x

v
s+1)

∏k
m=s+1 g

v(xvm, Y
v
m)
∏

w∈N(v) β
w
m(xm, x

w
m+1)ψv(dxvm)

∫
pv(xs, xvs+1)

∏k
m=s+1 g

v(xvm, Y
v
m)
∏

w∈N(v) β
w
m(xm, xwm+1)ψv(dxvm)

,

where βwm(xm, x
w
m+1) = 1 if m = k and w = v, and βwm(xm, x

w
m+1) = pw(xm, x

w
m+1)

otherwise. Note that the right hand side does not depend on ω. Thus whenever
x, z ∈ S satisfy xI\{j} = zI\{j} for j = (s + q + 1, v), we can construct a coupling
QJ
x,z using Lemma C.16 such that Cij ≤ (1 − ε2δ2)s+q+1−k for i = (k, v) with k =

s+ 1, . . . , s+ q.
We have now constructed coupled updates QJ

x,z for every pair x, z ∈ S that differ
only at one point. Collecting the above bounds on Cij, we can estimate

∑

(k′,v′)∈I

eβ{|k−k
′|+d(v,v′)}C(k,v)(k′,v′)

≤ 2eβ(q+r)(1− ε2)∆ + eβ(q+2r)(1− ε2(∆+1))∆2q

+ eβ(k−s)(1− ε2δ2)k−s + eβ(s+q+1−k)(1− ε2δ2)s+q+1−k

≤ 3q∆2eβ(q+2r)(1− ε2(∆+1)) + eβ(1− ε2δ2) + eβq(1− ε2δ2)q =: c

whenever (k, v) ∈ J . In the last line, we have used that αx+1 + αq−x is a convex
function of x ∈ [0, q − 1], and therefore attains its maximum on the endpoints x =
0, q − 1.

Up to this point we have considered an arbitrary block J = Jvl ∈ J with 1 < l <
dn/qe. It is however evident that the identical proof holds for the boundary blocks
l = 1, dn/qe, except that for l = 1 we only need to consider Cases 3–5 above and
for l = dn/qe we only need to consider Cases 1–3 above. As all the estimates are
otherwise identical, the corresponding bounds on Cij are at most as large as those in
the case 1 < l < dn/qe. Thus

‖C‖∞,βm := max
i∈I

∑

j∈I

eβm(i,j)Cij ≤ c,
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where we define the metric m(i, j) = |k − k′|+ d(v, v′) for (k, v) ∈ I and (k′, v′) ∈ I.
Our next order of business is to construct couplings Q̂J

x of γJx and γ̃Jx and to
estimate the coefficients bi. To this end, let us first note that hKn (x, z∂K) depends
only on x∂

2K , where

∂2K :=
⋃

w∈∂K

N(w) ∩K

is the subset of vertices in K that can interact with vertices outside K in two time
steps. It is easily seen that γJx = γ̃Jx , and that we can therefore choose bi = 0 for
i ∈ J , unless J = Jvl with v ∈ ∂2K for some K ∈ K. In the latter case we obtain by
Bayes’ formula

γ̃Jx (A) =
∫

1A(xJ)
∏s+q

m=s g
v(xvm, Y

v
m)hKm+1(xm, x

∂K
m+1)

∏
w∈N(v)∩K\∂K p

w(xm, x
w
m+1)ψ(dxJ)

∫ ∏s+q
m=s g

v(xvm, Y
v
m)hKm+1(xm, x∂Km+1)

∏
w∈N(v)∩K\∂K p

w(xm, xwm+1)ψ(dxJ)

for 1 < l < dn/qe, where s = (l − 1)q and ψ(dxJ) =
⊗

(k,v)∈J ψ
v(dxvk). Note that

∏

w∈N(v)\(K\∂K)

pw(x, zw) ≥ ε∆
∏

w∈N(v)\(K\∂K)

qw(xw, zw),

while

hKm(x, z∂K) ≥ ε∆
∏

w∈N(v)∩∂K

qw(xw, zw)

∫
π̃σm−1(dω)

∏

w∈∂K\N(v)

pw(xKωV \K , zw).

We can therefore estimate γJx (A) ≥ ε2(q+1)∆Γ(A) and γ̃Jx (A) ≥ ε2(q+1)∆Γ(A) with

Γ(A) =
∫

1A(xJ)
∏s+q

m=s g
v(xvm, Y

v
m) β(xvm, x

v
m+1)

∏
w∈N(v)∩K\∂K p

w(xm, x
w
m+1)ψ(dxJ)

∫ ∏s+q
m=s g

v(xvm, Y
v
m) β(xvm, x

v
m+1)

∏
w∈N(v)∩K\∂K p

w(xm, xwm+1)ψ(dxJ)
,

where β(x, z) = qv(x, z) if v ∈ ∂K and β(x, z) = 1 if v ∈ ∂2K\∂K. Thus we can
construct a coupling Q̂J

x using Lemma C.15 such that bi ≤ 1− ε2(q+1)∆ for all i ∈ J in
the case 1 < l < dn/qe. The same conclusion follows for l = 1, dn/qe by the identical
proof.

We are now ready to put everything together. As ‖ · ‖∞,βm is a matrix norm, we
have

‖D‖∞,βm ≤
∞∑

k=0

‖C‖k∞,βm ≤
1

1− c <∞.

Thus D <∞, to we can apply the comparison theorem. Moreover,

sup
i∈J

∑

j∈J ′
Dij = sup

i∈J
e−βm(i,J ′)

∑

j∈J ′
eβm(i,J ′)Dij ≤ e−βm(J,J ′)‖D‖∞,βm.
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Thus we obtain

‖πσn − π̃σn‖J ≤ 2(1− ε2(q+1)∆)
∑

i∈{n}×J

∑

j∈{1,...,n}×∂2K

Dij

≤ 2

1− c (1− ε2(q+1)∆) card J e−βd(J,∂2K).

But clearly d(J, ∂2K) ≥ d(J, ∂K)− r, and the proof is complete.

Remark C.17. In the proof of Theorem C.14 (and similarly for Theorem C.20 below),
we apply the comparison theorem with a nonoverlapping cover {(l−1)q+1, . . . , lq∧n},
l ≤ dn/qe. Working instead with overlapping blocks {s+1, . . . , s+q}, s ≤ n−q would
give somewhat better estimates at the expense of even more tedious computations.

C.6.2 Bounding the variance

We now turn to the problem of bounding the variance term |||π̃σn − π̂σn|||J . We will
follow the basic approach taken in Section 4.5.4 and Section A.6, where a detailed
discussion of the requisite ideas can be found. In this section we develop the necessary
changes to the proof in Section A.6.

At the heart of the proof of the variance bound lies a stability result for the block
filter, Proposition A.13. This result must be modified in the present setting to account
for the different assumptions on the spatial and temporal correlations. This will be
done next, using the generalized comparison Theorem 6.4 much as in the proof of
Theorem C.14.

Proposition C.18. Suppose there exist 0 < ε, δ < 1 such that

εqv(xv, zv) ≤ pv(x, zv) ≤ ε−1qv(xv, zv),

δ ≤ qv(xv, zv) ≤ δ−1

for every v ∈ V and x, z ∈ X, where qv : Xv × Xv → R+ is a transition density with
respect to ψv. Suppose also that we can choose q ∈ N and β > 0 such that

c := 3q∆2eβq(1− ε2(∆+1)) + eβ(1− ε2δ2) + eβq(1− ε2δ2)q < 1.

Then we have

‖F̃n · · · F̃s+1δσ − F̃n · · · F̃s+1δσ̃‖J ≤
2

1− c card J e−β(n−s)

for every s < n, σ, σ̃ ∈ X, K ∈ K and J ⊆ K.

Proof. We fix throughout the proof n > 0, K ∈ K, and J ⊆ K. We will also
assume for notational simplicity that s = 0. As F̃k differ for different k only by their
dependence on different observations Yk, and as the conclusion of the Proposition is
independent of the observations, the conclusion for s = 0 extends trivially to any
s < n.
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As in Theorem C.14, the idea behind the proof is to introduce a Markov random
field ρ of which the block filter is a marginal, followed by an application of the gener-
alized comparison theorem. Unfortunately, the construction in the proof of Theorem
C.14 is not appropriate in the present setting, as there all the local interactions de-
pend on the initial condition σ. That was irrelevant in Theorem C.14 where the initial
condition was fixed, but is fatal in the present setting where we aim to understand
a perturbation to the initial condition. Instead, we will use a more elaborate con-
struction of ρ introduced in Section A.6, called the computation tree. We begin by
recalling this construction.

Define for K ′ ∈ K the block neighborhood N(K ′) := {K ′′ ∈ K : d(K ′, K ′′) ≤ r}
(we recall that cardN(K ′) ≤ ∆K). We can evidently write

BK
′
F̃s
⊗

K′′∈K

µK
′′

= CK
′

s PK
′ ⊗

K′′∈N(K′)

µK
′′
,

where we define for any probability η on XK′

(CK
′

s η)(A) :=

∫
1A(xK

′
)
∏

v∈K′ g
v(xv, Y v

s ) η(dxK
′
)∫ ∏

v∈K′ g
v(xv, Y v

s ) η(dxK′)
,

and for any probability η on X
⋃
K′′∈N(K′)K

′′

(PK
′
η)(A) :=

∫
1A(xK

′
)
∏

v∈K′
pv(z, xv)ψv(dxv) η(dz).

Iterating this identity yields

BK F̃n · · · F̃1δσ =

CKn P
K

⊗

Kn−1∈N(K)

[
· · · CK2

2 PK2

⊗

K1∈N(K2)

[
CK1

1 PK1

⊗

K0∈N(K1)

δσK0

]
· · ·
]
.

The nested products can be naturally viewed as defining a tree.
To formalize this idea, define the tree index set (we will write Kn := K for

simplicity)

T := {[Ku · · ·Kn−1] : 0 ≤ u < n, Ks ∈ N(Ks+1) for u ≤ s < n} ∪ {[∅]}.

The root of the tree [∅] represents the block K at time n, while [Ku · · ·Kn−1] rep-
resents a duplicate of the block Ku at time u that affects the root along the branch
Ku → Ku+1 → · · · → Kn−1 → K. The set of sites corresponding to the computation
tree is

I = {[Ku · · ·Kn−1]v : [Ku · · ·Kn−1] ∈ T, v ∈ Ku} ∪ {[∅]v : v ∈ K},

and the corresponding configuration space is S =
∏

i∈I Xi with X[t]v := Xv. The
following tree notation will be used throughout the proof. Define for vertices of the
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tree T the depth d([Ku · · ·Kn−1]) := u and d([∅]) := n. For every site [t]v ∈ I, we
define the associated vertex v(i) := v and depth d(i) := d([t]). Define also the sets
I+ := {i ∈ I : d(i) > 0} and T0 := {[t] ∈ T : d([t]) = 0} of non-leaf sites and leaf
vertices, respectively. Define

c([Ku · · ·Kn−1]v) := {[Ku−1 · · ·Kn−1]v′ : Ku−1 ∈ N(Ku), v
′ ∈ N(v)},

and similarly for c([∅]v): that is, c(i) is the set of children of the site i ∈ I in the
computation tree. Finally, we will frequently identify a tree vertex [Ku · · ·Kn−1] ∈ T
with the corresponding set of sites {[Ku · · ·Kn−1]v : v ∈ Ku}, and analogously for
[∅].

Having introduced the tree structure, we now define probability measures ρ, ρ̃ on
S by

ρ(A) =

∫
1A(x)

∏
i∈I+ p

v(i)(xc(i), xi) gv(i)(xi, Y i)ψv(i)(dxi)
∏

[t]∈T0
δσ[t](dx[t])∫ ∏

i∈I+ p
v(i)(xc(i), xi) gv(i)(xi, Y i)ψv(i)(dxi)

∏
[t]∈T0

δσ[t](dx[t])
,

ρ̃(A) =

∫
1A(x)

∏
i∈I+ p

v(i)(xc(i), xi) gv(i)(xi, Y i)ψv(i)(dxi)
∏

[t]∈T0
δσ̃[t](dx[t])∫ ∏

i∈I+ p
v(i)(xc(i), xi) gv(i)(xi, Y i)ψv(i)(dxi)

∏
[t]∈T0

δσ̃[t](dx[t])
,

where we write σ[K0···Kn−1] := σK0 and Y i := Y
v(i)
d(i) for simplicity. Then, by construc-

tion, the measure BK F̃n · · · F̃1δσ coincides with the marginal of ρ on the root of the
computation tree, while BK F̃n · · · F̃1δσ̃ coincides with the marginal of ρ̃ on the root
of the tree: this is easily seen by expanding the above nested product identity. In
particular, we obtain

‖F̃n · · · F̃1δσ − F̃n · · · F̃1δσ̃‖J = ‖ρ− ρ̃‖[∅]J ,

and we aim to apply the comparison theorem to estimate this quantity.
The construction of the computation tree that we have just given is identical to the

construction in Section A.6. We deviate from the proof of Appendix A from this point
onward, since we must use Theorem 6.4 instead of the classical Dobrushin comparison
theorem to account for the distinction between temporal and spatial correlations in
the present setting.

Fix q ≥ 1. In analogy with the proof of Theorem C.14, we consider a cover J

consisting of blocks of sites i ∈ I such that (l − 1)q < d(i) ≤ lq ∧ n and v(i) = v. In
the present setting, however, the same vertex v is duplicated many times in the tree,
so that we end up with many disconnected blocks of different lengths. To keep track
of these blocks, define

I0 := {i ∈ I : d(i) = 0}, Il := {i ∈ I : d(i) = (l − 1)q + 1}

for 1 ≤ l ≤ dn/qe, and let

`([Ku, . . . , Kn−1]v) := max{s ≥ u : Ku = Ku+1 = · · · = Ks}.

We now define the cover J as

J = {J il : 0 ≤ l ≤ dn/qe, i ∈ Il},
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where

J i0 := {i}, J il := {[Ku · · ·Kn−1]v : (l − 1)q + 1 ≤ u ≤ lq ∧ `(i)}
for i = [K(l−1)q+1 · · ·Kn−1]v ∈ Il and 1 ≤ l ≤ dn/qe. It is easily seen that J is in fact
a partition of of the computation tree I into linear segments.

Having defined the cover J, we must now consider a suitable coupled update
rule. We will choose the natural local updates γJx (dzJ) = ρ(dzJ |xI\J) and γ̃Jx (dzJ) =
ρ̃(dzJ |xI\J), with the coupled updates QJ

x,z and Q̂J
x to be constructed below. Then

Theorem 6.4 yields

‖F̃n · · · F̃1δσ − F̃n · · · F̃1δσ̃‖J = ‖ρ− ρ̃‖[∅]J ≤ 2
∑

i∈[∅]J

∑

j∈I

Dij bj

provided that D =
∑∞

k=0 C
k <∞ (cf. Corollary 6.8), where

Cij = sup
x,z∈S:

xI\{j}=zI\{j}

∫
1ωi 6=ω′i Q

J(i)
x,z (dω, dω′), bi = sup

x∈S

∫
1ωi 6=ω′i Q̂

J(i)
x (dω, dω′),

and where we write J(i) for the unique block J ∈ J that contains i ∈ I. To put this
bound to good use, we must introduce coupled updates QJ

x,z and Q̂J
x and estimate Cij

and bj.
Let us fix until further notice a block J = J il ∈ J with i = [K(l−1)q+1 · · ·Kn−1]v ∈ Il

and 1 ≤ l ≤ dn/qe. From the definition of ρ, we can compute explicitly

γJx (A) =∫
1A(xJ) pv(xc(i), xi)

∏
a∈I+:J∩c(a)6=∅ p

v(a)(xc(a), xa)
∏

b∈J g
v(xb, Y b)ψv(dxb)∫

pv(xc(i), xi)
∏

a∈I+:J∩c(a)6=∅ p
v(a)(xc(a), xa)

∏
b∈J g

v(xb, Y b)ψv(dxb)

using the Bayes formula. We now proceed to construct couplings QJ
x,z of γJx and γJz

for x, z ∈ S that differ only at the site j ∈ I. We distinguish the following cases:

1. d(j) = (l − 1)q and v(j) 6= v;

2. d(j) = (l − 1)q and v(j) = v;

3. (l − 1)q + 1 ≤ d(j) ≤ lq ∧ `(i) and v(j) 6= v;

4. d(j) = lq ∧ `(i) + 1 and v(j) 6= v;

5. d(j) = lq ∧ `(i) + 1 and v(j) = v.

It is easily seen that γJx does not depend on xj except in one of the above cases. Thus
when j satisfies none of the above conditions, we can set Caj = 0 for a ∈ J .

Case 1. In this case, we must have j ∈ c(i) with v(j) 6= v. Note that

γJx (A) ≥

ε2

∫
1A(xJ) qv(xi− , xi)

∏
a∈I+:J∩c(a) 6=∅ p

v(a)(xc(a), xa)
∏

b∈J g
v(xb, Y b)ψv(dxb)∫

qv(xi− , xi)
∏

a∈I+:J∩c(a)6=∅ p
v(a)(xc(a), xa)

∏
b∈J g

v(xb, Y b)ψv(dxb)
,
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where we define i− ∈ c(i) to be the (unique) child of i such that v(i−) = v(i). As the
right hand side does not depend on xj, we can construct a coupling QJ

x,z using Lemma

C.15 such that Caj ≤ 1− ε2 for every a ∈ J and x, z ∈ S such that xI\{j} = zI\{j}.
Case 2. In this case we have j = i−. Let us write J = {i1, . . . , iu} where

u = card J and d(ik) = (l − 1)q + k for k = 1, . . . , u. Thus i1 = i, and we define
i0 = i−. Let us also write J̃k = {ik, . . . , iu}. Then we can define the transition kernels
on Xv

Pk,x(ω,A) =∫
1A(xik) pv(ωxc(ik)\ik−1 , xik)

∏
J̃k∩c(a)6=∅ p

v(a)(xc(a), xa)
∏

b∈J̃k g
v(xb, Y b)ψv(dxb)∫

pv(ωxc(ik)\ik−1 , xik)
∏

J̃k∩c(a)6=∅ p
v(a)(xc(a), xa)

∏
b∈J̃k g

v(xb, Y b)ψv(dxb)

for k = 1, . . . , u. By construction, Pk,x(x
ik−1 , dxik) = γJx (dxik |xi1 , . . . , xik−1), so we are

in the setting of Lemma C.16. Moreover, we can estimate

Pk,x(ω,A) ≥ ε2δ2

∫
1A(xik)

∏
J̃k∩c(a)6=∅ p

v(a)(xc(a), xa)
∏

b∈J̃k g
v(xb, Y b)ψv(dxb)∫ ∏

J̃k∩c(a)6=∅ p
v(a)(xc(a), xa)

∏
b∈J̃k g

v(xb, Y b)ψv(dxb)
.

Thus whenever x, z ∈ S satisfy xI\{j} = zI\{j}, we can construct a coupling QJ
x,z using

Lemma C.16 such that Cikj ≤ (1− ε2δ2)k for every k = 1, . . . , u.
Case 3. In this case we have j ∈ ⋃a∈I+:J∩c(a)6=∅ c(a) or J ∩ c(j) 6= ∅, with

v(j) 6= v. Let us note for future reference that there are at most q∆2 such sites j.
Now note that

γJx (A) ≥ ε2(∆+1) ×∫
1A(xJ) pv(xc(i), xi)

∏
a∈I+:J∩c(a)6=∅ β

a(xc(a), xa)
∏

b∈J g
v(xb, Y b)ψv(dxb)∫

pv(xc(i), xi)
∏

a∈I+:J∩c(a)6=∅ β
a(xc(a), xa)

∏
b∈J g

v(xb, Y b)ψv(dxb)
,

where we have defined βa(xc(a), xa) = qv(a)(xa− , xa) whenever j = a or j ∈ c(a), and
βa(xc(a), xa) = pv(a)(xc(a), xa) otherwise. The right hand side of this expression does
not depend on xj as the terms qv(a)(xa− , xa) for v(a) 6= v cancel in the numerator
and denominator. Thus whenever x, z ∈ S satisfy xI\{j} = zI\{j}, we can construct a
coupling QJ

x,z using Lemma C.15 such that Caj ≤ 1− ε2(∆+1) for every a ∈ J .
Case 4. In this case J ∩ c(j) 6= ∅ with v(j) 6= v. Note that

γJx (A) ≥

ε2

∫
1A(xJ) pv(xc(i), xi)

∏
a∈I+:J∩c(a)6=∅ β

a(xc(a), xa)
∏

b∈J g
v(xb, Y b)ψv(dxb)∫

pv(xc(i), xi)
∏

a∈I+:J∩c(a) 6=∅ β
a(xc(a), xa)

∏
b∈J g

v(xb, Y b)ψv(dxb)
,

where βa(xc(a), xa) = qv(a)(xa− , xa) when j = a, and βa(xc(a), xa) = pv(a)(xc(a), xa)
otherwise. The right hand side does not depend on xj as the term qv(j)(xj− , xj) cancels
in the numerator and denominator. Thus whenever x, z ∈ S satisfy xI\{j} = zI\{j},
we can construct a coupling QJ

x,z using Lemma C.15 such that Caj ≤ 1− ε2 for every
a ∈ J .
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Case 5. In this case we have j− ∈ J . Note that the existence of such j necessarily
implies that `(i) > lq by the definition of J . We can therefore write J = {i1, . . . , iq}
where d(ik) = lq− k+ 1 for k = 1, . . . , q, and we define i0 = j. Let us also define the
sets J̃k = {ik, . . . , iq}. Then we can define the transition kernels on Xv

Pk,x(ω,A) =∫
1A(xik) pv(xc(iq), xiq)

∏
a∈I+:J̃k∩c(a) 6=∅ β

a
ω(xc(a), xa)

∏
b∈J̃k g

v(xb, Y b)ψv(dxb)∫
pv(xc(iq), xiq)

∏
a∈I+:J̃k∩c(a)6=∅ β

a
ω(xc(a), xa)

∏
b∈J̃k g

v(xb, Y b)ψv(dxb)

for k = 1, . . . , q, where βaω(xc(a), xa) = pv(xc(a), ω) if a = ik−1 and βaω(xc(a), xa) =
pv(a)(xc(a), xa) otherwise. By construction Pk,x(x

ik−1 , dxik) = γJx (dxik |xi1 , . . . , xik−1),
so we are in the setting of Lemma C.16. Moreover, we can estimate

Pk,x(ω,A) ≥ ε2δ2 ×∫
1A(xik) pv(xc(iq), xiq)

∏
a∈I+:J̃k∩c(a)6=∅ β

a(xc(a), xa)
∏

b∈J̃k g
v(xb, Y b)ψv(dxb)∫

pv(xc(iq), xiq)
∏

a∈I+:J̃k∩c(a)6=∅ β
a(xc(a), xa)

∏
b∈J̃k g

v(xb, Y b)ψv(dxb)
,

where βa(xc(a), xa) = 1 if a = ik−1 and βa(xc(a), xa) = pv(a)(xc(a), xa) otherwise. Thus
whenever x, z ∈ S satisfy xI\{j} = zI\{j}, we can construct a coupling QJ

x,z using
Lemma C.16 such that Cikj ≤ (1− ε2δ2)k for every k = 1, . . . , q.

We have now constructed coupled updates QJ
x,z for every pair x, z ∈ S that differ

only at one point. Collecting the above bounds on the matrix C, we can estimate
∑

j∈I

eβ|d(a)−d(j)|Caj ≤ 3q∆2eβq(1− ε2(∆+1)) + eβ(1− ε2δ2) + eβq(1− ε2δ2)q =: c

whenever a ∈ J , where we have used the convexity of the function αx+1 + αq−x.
Up to this point we have considered an arbitrary block J = J il ∈ J with 1 ≤ l ≤

dn/qe. However, in the remaining case l = 0 it is easily seen that γJx = δσJ does not
depend on x, so we can evidently set Caj = 0 for a ∈ J . Thus we have shown that

‖C‖∞,βm := max
i∈I

∑

j∈I

eβm(i,j)Cij ≤ c,

where we define the pseudometric m(i, j) = |d(i)− d(j)|. On the other hand, in the
present setting it is evident that γJx = γ̃Jx whenever J = J il ∈ J with 1 ≤ l ≤ dn/qe.
We can therefore choose couplings Q̂J

x such that bi ≤ 1d(i)=0 for all i ∈ I. Substituting
into the comparison theorem and arguing as in the proof of Theorem C.14 yields the
estimate

‖F̃n · · · F̃1δσ − F̃n · · · F̃1δσ̃‖J ≤
2

1− c card J e−βn.

Thus the proof is complete.

Proposition C.18 provides control of the block filter as a function of time but not
as a function of the initial conditions. The dependence on the initial conditions can
however be incorporated a posteriori as in the proof of Proposition A.15. This yields
the following result, which forms the basis for the proof of Theorem C.20 below.
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Corollary C.19 (Block filter stability). Suppose there exist 0 < ε, δ < 1 such that

εqv(xv, zv) ≤ pv(x, zv) ≤ ε−1qv(xv, zv),

δ ≤ qv(xv, zv) ≤ δ−1

for every v ∈ V and x, z ∈ X, where qv : Xv × Xv → R+ is a transition density with
respect to ψv. Suppose also that we can choose q ∈ N and β > 0 such that

c := 3q∆2eβq(1− ε2(∆+1)) + eβ(1− ε2δ2) + eβq(1− ε2δ2)q < 1.

Let µ and ν be (possibly random) probability measures on X of the form

µ =
⊗

K∈K

µK , ν =
⊗

K∈K

νK .

Then we have

‖F̃n · · · F̃s+1µ− F̃n · · · F̃s+1ν‖J ≤
2

1− c card J e−β(n−s),

as well as

E[‖F̃n · · · F̃s+1µ− F̃n · · · F̃s+1ν‖2
J ]1/2

≤ 2

1− c
1

(εδ)2|K|∞
card J (e−β∆K)n−s max

K∈K
E[‖µK − νK‖2]1/2,

for every s < n, K ∈ K and J ⊆ K.

Proof. The proof is a direct adaptation of the proof of Proposition A.15.

The block filter stability result in Appendix A is the only place in the proof of
the variance bound where the inadequacy of the classical comparison theorem plays
a role. Having exploited the generalized comparison Theorem 6.4 to extend the
stability results in Appendix A to the present setting, we would therefore expect that
the remainder of the proof of the variance bound follows verbatim from Appendix
A. Unfortunately, however, there is a complication: the result of Corollary C.19
is not as powerful as the corresponding result in Appendix A. Note that the first
(uniform) bound in Corollary C.19 decays exponentially in time n, but the second
(initial condition dependent) bound only decays in n if it happens to be the case
that e−β∆K < 1. As in Appendix A both the spatial and temporal interactions were
assumed to be sufficiently weak, we could assume that the latter was always the case.
In the present setting, however, it is possible that e−β∆K ≥ 1 no matter how weak
are the spatial correlations.

To surmount this problem, we will use a slightly different error decomposition than
was used in Appendix A to complete the proof of the variance bound. The present
approach is inspired by [15]. The price we pay is that the variance bound scales in the
number of samples as N−γ where γ may be less than the optimal (by the central limit
theorem) rate 1

2
. It is likely that a more sophisticated method of proof would yield
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the optimal N
1
2 rate in the variance bound. However, let us note that in order to put

the block particle filter to good use we must optimize over the size of the blocks in K,
and optimizing the error bound in Theorem 6.13 yields at best a rate of order N−α

for some constant α depending on the constants β1, β2. As the proof of Theorem 6.13
is not expected to yield realistic values for the constants β1, β2, the suboptimality of
the variance rate γ does not significantly alter the practical conclusions that can be
drawn from Theorem 6.13.

We now proceed to the variance bound. The following is the main result of this
section.

Theorem C.20 (Variance term). Suppose there exist 0 < ε, δ, κ < 1 such that

εqv(xv, zv) ≤ pv(x, zv) ≤ ε−1qv(xv, zv),

δ ≤ qv(xv, zv) ≤ δ−1,

κ ≤ gv(xv, yv) ≤ κ−1

for every v ∈ V , x, z ∈ X, and y ∈ Y, where qv : Xv×Xv → R+ is a transition density
with respect to ψv. Suppose also that we can choose q ∈ N and β > 0 such that

c := 3q∆2eβq(1− ε2(∆+1)) + eβ(1− ε2δ2) + eβq(1− ε2δ2)q < 1.

Then for every n ≥ 0, σ ∈ X, K ∈ K and J ⊆ K, the following hold:

1. If e−β∆K < 1, we have

|||π̃σn − π̂σn|||J ≤ card J
32∆K

1− c
2− e−β∆K

1− e−β∆K

(εδκ∆K)−4|K|∞

N
1
2

.

2. If e−β∆K = 1, we have

|||π̃σn − π̂σn|||J ≤ card J
16β−1∆K

1− c (εδκ∆K)−4|K|∞ 3 + logN

N
1
2

.

3. If e−β∆K > 1, we have

|||π̃σn − π̂σn|||J ≤ card J
32∆K

1− c

{
1

e−β∆K − 1
+ 2

}
(εδκ∆K)−4|K|∞

N
β

2 log ∆K

.

The proof of Theorem C.20 combines the stability bounds of Corollary C.19 and
one-step bounds on the sampling error, Lemma A.17 and Proposition A.20, that can
be used verbatim in the present setting. We recall the latter here for the reader’s
convenience.

Proposition C.21 (Sampling error). Suppose there exist 0 < ε, δ, κ < 1 such that

εqv(xv, zv) ≤ pv(x, zv) ≤ ε−1qv(xv, zv),

δ ≤ qv(xv, zv) ≤ δ−1,

κ ≤ gv(xv, yv) ≤ κ−1
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for every v ∈ V , x, z ∈ X, and y ∈ Y. Then we have

max
K∈K
|||F̃nπ̂σn−1 − F̂nπ̂

σ
n−1|||K ≤

2κ−2|K|∞

N
1
2

and

max
K∈K

E[‖F̃s+1F̃sπ̂
σ
s−1 − F̃s+1F̂sπ̂

σ
s−1‖2

K ]1/2 ≤ 16∆K(εδ)−2|K|∞κ−4|K|∞∆K

N
1
2

for every 0 < s < n and σ ∈ X.

Proof. Immediate from Lemma A.17 and Proposition A.20 upon replacing ε by εδ.

We can now prove Theorem C.20.

Proof of Theorem C.20. We fix for the time being an integer t ≥ 1 (we will optimize
over t at the end of the proof). We argue differently when n ≤ t and when n > t.

Suppose first that n ≤ t. In this case, we estimate

|||π̃σn − π̂σn|||J = |||F̃n · · · F̃1δσ − F̂n · · · F̂1δσ|||J

≤
n∑

k=1

|||F̃n · · · F̃k+1F̃kπ̂
σ
k−1 − F̃n · · · F̃k+1F̂kπ̂

σ
k−1|||J

using a telescoping sum and the triangle inequality. The term k = n in the sum
is estimated by the first bound in Proposition C.21, while the remaining terms are
estimated by the second bound of Corollary C.19 and Proposition C.21, respectively.
This yields

|||π̃σn − π̂σn|||J ≤ card J
32∆K

1− c
(εδκ∆K)−4|K|∞

N
1
2

{
(e−β∆K)n−1 − 1

e−β∆K − 1
+ 1

}

(in the case e−β∆K = 1, the quantity between the brackets { · } equals n).
Now suppose that n > t. Then we decompose the error as

|||π̃σn − π̂σn|||J ≤ |||F̃n · · · F̃n−t+1π̃
σ
n−t − F̃n · · · F̃n−t+1π̂

σ
n−t|||J

+
n∑

k=n−t+1

|||F̃n · · · F̃k+1F̃kπ̂
σ
k−1 − F̃n · · · F̃k+1F̂kπ̂

σ
k−1|||J ,

that is, we develop the telescoping sum for t steps only. The first term is estimated
by the first bound in Corollary C.19, while the sum is estimated as in the case n ≤ t.
This yields

|||π̃σn − π̂σn|||J ≤
card J

1− c

[
2e−βt +

32∆K(εδκ∆K)−4|K|∞

N
1
2

{
(e−β∆K)t−1 − 1

e−β∆K − 1
+ 1

}]

(in the case e−β∆K = 1, the quantity between the brackets { · } equals t).
We now consider separately the three cases in the statement of the Theorem.
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Case 1. In this case we choose t = n, and note that

(e−β∆K)n−1 − 1

e−β∆K − 1
+ 1 ≤ 2− e−β∆K

1− e−β∆K

for all n ≥ 1.

Thus the result follows from the first bound above.
Case 2. In this case we have

|||π̃σn − π̂σn|||J ≤
card J

1− c

[
2e−βt +

32∆K(εδκ∆K)−4|K|∞

N
1
2

t

]

for all t, n ≥ 1. Now choose t = d(2β)−1 logNe. Then

|||π̃σn − π̂σn|||J ≤
card J

1− c

[
16β−1∆K(εδκ∆K)−4|K|∞ logN

N
1
2

+
34∆K(εδκ∆K)−4|K|∞

N
1
2

]
,

which readily yields the desired bound.
Case 3. In this case we have

|||π̃σn − π̂σn|||J ≤
card J

1− c

[
2e−βt +

32∆K(εδκ∆K)−4|K|∞

N
1
2

{
(e−β∆K)t−1 − 1

e−β∆K − 1
+ 1

}]

for all t, n ≥ 1. Now choose t =
⌈

logN
2 log ∆K

⌉
. Then

|||π̃σn − π̂σn|||J ≤ card J
32∆K

1− c

{
1

e−β∆K − 1
+ 2

}
(εδκ∆K)−4|K|∞

N
β

2 log ∆K

,

and the proof is complete.

The conclusion of Theorem 6.13 now follows readily from Theorems C.14 and C.20.
We must only check that the assumptions Theorems C.14 and C.20 are satisfied. The
assumption of Theorem C.14 is slightly stronger than that of Theorem C.20, so it
suffices to consider the former. To this end, fix 0 < δ < 1, and choose q ∈ N such
that

1− δ2 + (1− δ2)q < 1.

Then we may evidently choose 0 < ε0 < 1, depending on δ and ∆ only, such that

3q∆2(1− ε2(∆+1)) + 1− ε2δ2 + (1− ε2δ2)q < 1

for all ε0 < ε ≤ 1. This is the constant ε0 that appears in the statement of Theorem
6.13. Finally, it is now clear that we can choose β > 0 sufficiently close to zero
(depending on δ, ε, r,∆ only) such that c < 1. Thus the proof of Theorem 6.13 is
complete.
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Appendix D

Nonlinear filtering in infinite
dimension: proofs

This appendix is devoted to the proof of Theorem 7.7. The proof relies on standard
tools from statistical mechanics [7, 27]: a Peierls argument for the low noise regime
and a Dobrushin contraction method for the high noise regime.

D.1 Proof of Theorem 7.7: low noise

We begin by noting that as (Xv
k , Y

v
k )k,v∈Z and (−Xv

k , Y
v
k )k,v∈Z have the same law, it

follows that E(X0
k |Y1, . . . , Yk) = E(−X0

k |Y1, . . . , Yk), and we therefore have

E(X0
k |Y1, . . . , Yk) = 0 for all k ≥ 1.

To prove that the filter is not stable, it therefore suffices to show that

inf
k≥1

E |E(X0
k |X0, Y1, . . . , Yk)| > 0.

To show this, we begin by reducing the problem to finite dimension.

Lemma D.1. Suppose that 0 < p ≤ 1/2. Then

E(X0
k |X0, Y1, . . . , Yk, {Xv

1 , . . . , X
v
k : |v| > m}) m→∞−−−→ E(X0

k |X0, Y1, . . . , Yk) a.s.

Proof. Let β := log
√

(1− p)/p > 0. We begin by noting that

P(Ŷ v
` = y|X0, . . . , Xk) =

√
p(1− p) eβyXv

`X
v+1
`

for 1 ≤ ` ≤ k and y ∈ {−1, 1}. Define the probability measure Q such that

P(A) = EQ

(
1A

k∏

`=1

4p(1− p) eβŶm` Xm
` X

m+1
` eβŶ

−m−1
` X−m−1

` X−m`

)
.
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Then under Q, the observations Ŷ m
` and Ŷ −m−1

` , 1 ≤ ` ≤ k are symmetric Bernoulli
and independent from all the remaining variables in the model, while the remainder
of the model is the same as defined above. In particular, this implies that

{Xv
0 , X

v
` , Y

v
` : 1 ≤ ` ≤ k, |v| > m} ⊥⊥ {Xv

0 , X
v
` , Y

v
` : 1 ≤ ` ≤ k, |v| ≤ m} under Q.

We therefore obtain using the Bayes formula (Theorem 2.7)

P(A|X0, Y1, . . . , Yk, {Xv
1 , . . . , X

v
k : |v| > m}) =

EQ(1A
dP
dQ
|X0, Y1, . . . , Yk, {Xv

1 , . . . , X
v
k : |v| > m})

EQ( dP
dQ
|X0, Y1, . . . , Yk, {Xv

1 , . . . , X
v
k : |v| > m})

≥ e−4βk Q(A|X0, Y1, . . . , Yk, {Xv
1 , . . . , X

v
k : |v| > m})

= e−4βk Q(A|X0, Y1, . . . , Yk)

for any A ∈ σ{X0, Y1, . . . , Yk, X
v
1 , . . . , X

v
k : |v| ≤ m}.

Define Z0 := (X0
1 , . . . , X

0
k) and Z−m := (Xm

1 , . . . , X
m
k , X

−m
1 , . . . , X−mk ) for m ≥ 1.

Due to the conditional independence structure of the infinite-dimensional filtering
model,

E(f(Z−m)|X0, Y1, . . . , Yk, Z
−m−1, Z−m−2, . . .) = E(f(Z−m)|X0, Y1, . . . , Yk, Z

−m−1)

for every m ≥ 0. Thus (Zm)m≤0 is a Markov chain under any regular version of
the conditional distribution P( · |X0, Y1, . . . , Yk) (almost surely with respect to the
realization of X0, Y1, . . . , Yk). Moreover, the above estimate shows that the (random)
transition kernels of this Markov chain satisfy the Doeblin condition [38, Theorem
16.2.4], so

|E(X0
k |X0, Y1, . . . , Yk, {Xv

1 , . . . , X
v
k : |v| > m})− E(X0

k |X0, Y1, . . . , Yk)|
≤ 2(1− e−4βk)m+1

for all m ≥ 0. This completes the proof.

Lemma D.1 reduces our problem to a finite-dimensional one. Indeed, it is clear
that the filter is not stable for p = 0 (for precisely the same reason as in Example
7.1), so we will assume without loss of generality in the sequel that 0 < p ≤ 1/2.
Applying Lemma D.1, it follows that in order to prove that the filter is not stable, it
suffices to show that

inf
k,m≥1

E |E(X0
k |X0, Y1, . . . , Yk, {Xv

1 , . . . , X
v
k : |v| > m})| > 0.

But the conditional independence structure of the infinite-dimensional filtering model
implies that the conditional expectation inside this expression depends only on Xv

`

and Y v
` for 0 ≤ ` ≤ k and |v| ≤ m + 1. We are thus faced with the problem of

obtaining a lower bound on this finite-dimensional quantity that is uniform in k,m.
To lighten the notation, it will be convenient to view (Xv

k )k,v∈Z not as a sequence
of spatial random fields on Z, but rather as a single space-time random field on Z2.
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To this end, we will write Xq := Xv
k for q = (k, v) ∈ Z2. We will similarly write

Y qr := Ȳ v
k and ξqr := ξ̄vk if q = (k − 1, v) and r = (k, v), and Y qr := Ŷ v

k and ξqr := ξ̂vk
if q = (k, v) and r = (k, v + 1) (the order of the indices q, r is irrelevant, that is,
Y qr := Y rq etc.) In this manner, we can view X = (Xq)q∈Z2 as a random field on the
lattice Z2, with observations Y qr attached to each edge {q, r} ⊂ Z2 with ‖q− r‖ = 1.

Lemma D.2. Suppose that 0 < p ≤ 1/2, and let k,m ≥ 1. Define the quantities
β := log

√
(1− p)/p, J := [1, k]× [−m,m], and ∂J := {0}× [−m,m]∪ [1, k]×{−m−

1,m+ 1}. For any given configuration x ∈ {−1, 1}Z2
, we define the random measure

Σ on {−1, 1}J as

Σx({z}) :=
1

Z
exp

(
β

{ ∑

{q,r}⊆J :‖q−r‖=1

ξqrxqxrzqzr +
∑

q∈J,r∈∂J :‖q−r‖=1

ξqrxqzq

})
,

where Z is the normalization such that Σx(J) = 1. Then

E((Xq)q∈J ∈ A|X0, Y1, . . . , Yk, {Xv
1 , . . . , X

v
k : |v| > m}) = ΣX(A).

Proof. By the conditional independence structure of the filtering model, we have

E((Xq)q∈J ∈ A|X0, Y1, . . . , Yk, {Xv
1 , . . . , X

v
k : |v| > m}) =

E((Xq)q∈J ∈ A|(Xq)q∈∂J , (Y
qr)q∈J,r∈J∪∂J,‖q−r‖=1).

The joint distribution of the random variables that appear in this expression is

P((Xq)q∈J∪∂J = z, (Y qr)q∈J,r∈J∪∂J,‖q−r‖=1 = y) = 2−|J∪∂J | ×
∏

{q,r}⊆J :‖q−r‖=1

√
p(1− p) eβyqrzqzr

∏

q∈J,r∈∂J :‖q−r‖=1

√
p(1− p) eβyqrzqzr ,

where |A| denotes the cardinality of a set A. The result now follows readily from the
Bayes formula (Theorem 2.7) and the fact that Y qr = XqXrξqr by construction.

Lemma D.2 shows that the distribution P( · |X0, Y1, . . . , Yk, {Xv
1 , . . . , X

v
k : |v| >

m}) has a familiar form in statistical mechanics: it is (up to the change of variables or
gauge transformation σq = xqzq) an Ising model with random interactions, also known
as a random bond Ising model or an Ising spin glass, with inverse temperature β =
log
√

(1− p)/p. The failure of stability of the filter for large β can now be addressed
using a standard method in statistical mechanics [7, section 6.4]. For concreteness,
we include the requisite arguments in the present setting, which completes the proof.

Proposition D.3. There exists an absolute constant 0 < p? < 1/2 such that

E |E(X0
k |X0, Y1, . . . , Yk, {Xv

1 , . . . , X
v
k : |v| > m})| ≥ 1

4

for every k,m ≥ 1 whenever 0 < p < p?.
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Proof. Let us fix k,m ≥ 1 throughout the proof, and define 0 := (k, 0) ∈ J . We will
prove below the following claim: there exists an absolute constant 0 < p? < 1/2 such
that

P

(
Σx({z : z0 = x0}) ≥ 3

4

)
≥ 1

2

whenever 0 < p < p?: that is, when the noise is sufficiently small, the conditional
distribution P(X0

k ∈ · |X0, Y1, . . . , Yk, {Xv
1 , . . . , X

v
k : |v| > m}) assigns a large proba-

bility to the actually realized value of X0
k at least half of the time (recall Lemma D.2).

Let us complete the proof assuming this claim. Note that Σx({z : z0 = x0}) ≥ 3/4
implies |Σx({z : z0 = 1})− Σx({z : z0 = −1})| ≥ 1/2. Thus the above claim implies
that

P

(
|E(X0

k |X0, Y1, . . . , Yk, {Xv
1 , . . . , X

v
k : |v| > m})| ≥ 1

2

∣∣∣∣X0, . . . , Xk

)
≥ 1

2
,

where we have used Lemma D.2 and the fact that {Xq} and {ξqr} are independent.
The proof is now completed by a straightforward estimate.

It remains to prove the above claim. To this end, we use a Peierls argument. Fix
for the time being a configuration z ∈ {−1, 1}J . For any J ′ ⊆ J , define the boundary
edges

EJ ′ := {{q, r} : q ∈ J ′, r ∈ (J\J ′) ∪ ∂J, ‖q − r‖ = 1}.
A subset J ′ ⊆ J is called a contour if it is simply connected, zq = −xq for all
{q, r} ∈ EJ ′ with q ∈ J ′, and zr = xr if in addition r ∈ J\J ′. We will denote the
set of contours as Cz,x (note that the definition of a contour depends on the given
configurations z and x). If z0 = −x0, then there must exist a contour J ′ ∈ Cz,x such
that 0 ∈ J ′: indeed, construct J ′ by choosing the maximal connected subset of J
such that 0 ∈ J ′ and zq = −xq for all q ∈ J ′, and then “fill in the holes” to make J ′

simply connected. Thus

Σx({z : z0 = −x0}) ≤ Σx({z : ∃ J ′ ∈ Cz,x, 0 ∈ J ′}) ≤
∑

J ′30

Σx({z : J ′ ∈ Cz,x}).

Now note that, by the definition of a contour, xqzq = −1 whenever {q, r} ∈ EJ ′ with
q ∈ J ′, and xqxrzqzr = −1 if in addition r ∈ J\J ′. Thus the existence of a contour
implies the presence of many such edges. The basic idea of the proof is that the
probability that this occurs is small under Σx due to Lemma D.2. Let us make this
precise.

Lemma D.4. For any J ′ ⊆ J , we have

Σx({z : J ′ ∈ Cz,x}) ≤ exp

(
− 2β

∑

{q,r}∈EJ ′
ξqr
)
.

Proof. Assume without loss of generality that J ′ is simply connected. Let us use for
simplicity the convention that zr = xr for r ∈ ∂J . Define the events

A = {z : zq = −xq and zr = xr for {q, r} ∈ EJ ′, q ∈ J ′},
B = {z : zq = xq and zr = xr for {q, r} ∈ EJ ′, q ∈ J ′}.
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Then we evidently have by Lemma D.2

Σx({z : J ′ ∈ Cz,x}) = Σx(A) ≤ Σx(A)

Σx(B)
.

An elementary computation shows that

Σx(A)

Σx(B)
= exp

(
− 2β

∑

{q,r}∈EJ ′
ξqr
) ∑

z 1A(z) exp(β
∑
{q,r}⊆J ′:‖q−r‖=1 ξ

qrxqxrzqzr)
∑

z 1B(z) exp(β
∑
{q,r}⊆J ′:‖q−r‖=1 ξ

qrxqxrzqzr)
.

But the ratio in this expression is unity, as the exponential term inside the sums is
invariant under the transformation zq 7→ −zq for all q ∈ J ′. The proof is complete.

Lemma D.4 allows us to estimate

P

(
Σx({z : z0 = −x0})] ≥

∑

J ′30 simply connected

e−β|EJ
′|

)

≤ P

( ∑

J ′30 simp. conn.

exp

(
− 2β

∑

{q,r}∈EJ ′
ξqr
)
≥

∑

J ′30 simp. conn.

e−β|EJ
′|

)

≤ P

(
∃ J ′ 3 0 simply connected with

∑

{q,r}∈EJ ′
ξqr ≤ |EJ

′|
2

)

≤
∑

J ′30 simply connected

P

( ∑

{q,r}∈EJ ′
ξqr ≤ |EJ

′|
2

)
.

Using a standard combinatorial result [27, Lemma 6.13]

|{J ′ ⊆ J simply connected : 0 ∈ J ′, |EJ ′| = l}| ≤ l3l−1,

as well as the simple bound

P

( ∑

{q,r}∈EJ ′
ξqr ≤ |EJ

′|
2

)
= P

(
Bin(|EJ ′|, 1− p) ≤ 3

4
|EJ ′|

)
≤ 2|EJ

′|p|EJ
′|/4,

we can conclude that

P

(
Σx({z : z0 = −x0})] ≥ c1

)
≤ c2, c1 =

∞∑

l=3

l3l−1

(
p

1− p

)l/2
, c2 =

∞∑

l=3

l3l−12lpl/4.

But we can now evidently choose p? > 0 sufficiently small such that c1 ≤ 1/4 and
c2 ≤ 1/2 whenever p ≤ p?, which readily yields the desired estimate.
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D.2 Proof of Theorem 7.7: high noise

We now turn to proving that the filter is stable when the noise is strong. We begin by
noting that it suffices to prove stability of finite-dimensional marginals of the filter.

Lemma D.5. Suppose that

E |E(f(X−mk , . . . , Xm
k )|X0, Y1, . . . , Yk)− E(f(X−mk , . . . , Xm

k )|Y1, . . . , Yk)| k→∞−−−→ 0

for every function f and every m ≥ 1. Then the filter is stable.

Proof. Fix any measurable subset A of {−1, 1}Z and define

Fm = fm(X−m0 , . . . , Xm
0 ) := P(X0 ∈ A|X−m0 , . . . , Xm

0 ).

We can estimate

E |P(Xk ∈ A|X0, Y1, . . . , Yk)−P(Xk ∈ A|Y1, . . . , Yk)|
≤ 2 E |fm(X−mk , . . . , Xm

k )− 1A(Xk)|
+ E |E(fm(X−mk , . . . , Xm

k )|X0, Y1, . . . , Yk)− E(fm(X−mk , . . . , Xm
k )|Y1, . . . , Yk)|.

By stationarity the first term does not depend on k, and the assumption gives

lim sup
k→∞

E |P(Xk ∈ A|X0, Y1, . . . , Yk)−P(Xk ∈ A|Y1, . . . , Yk)| ≤ 2 E |Fm − 1A(X0)|.

Letting m→∞ and using the martingale convergence theorem concludes the proof.

We will in fact prove a much stronger pathwise bound than is required by the
above lemma. The basic tool we will use for this purpose is the Dobrushin comparison
theorem (Theorem 2.11), which we state here in a convenient form.

Theorem D.6 (Dobrushin comparison theorem). Let µ and ν be probability measures
on {−1, 1}I for some countable set I, and choose measurable functions mi, ni such
that

mi(X) = µ(X i = 1|{Xj : j 6= i}), ni(X) = ν(X i = 1|{Xj : j 6= i}).
Define

bi := sup
x
|mi(x)− ni(x)|, Cji := sup

x,z:xv=zv for v 6=i
|mj(x)−mj(z)|,

and assume that
sup
j∈I

∑

i∈I

Cji < 1.

Then D :=
∑∞

n=0C
n exists (in the sense of matrix algebra), and

|µf − νf | ≤
∑

j∈J

∑

i∈I

Djibi

whenever J is a finite set, f(x) depends only on {xj : j ∈ J}, and 0 ≤ f ≤ 1.

202



We will apply this result pathwise to compare the filters with and without con-
ditioning on the initial condition. To this end, we must compute the quantities that
arise in the Dobrushin comparison theorem for suitably chosen regular conditional
probabilities.

Lemma D.7. Fix any version of the regular conditional probabilities

µX,Y := P(X0, . . . , Xk ∈ · |X0, Y1, . . . , Yk), νY := P(X0, . . . , Xk ∈ · |Y1, . . . , Yk).

Then there is a set A with P((X, Y ) ∈ A) = 1 such that for every (x, y) ∈ A

µx,y(X
v
` = 1|{Xw

r : (r, w) 6= (`, v)}) = νy(X
v
` = 1|{Xw

r : (r, w) 6= (`, v)}) =

eβ{ȳ
v
`X

v
`−1+ŷv`X

v+1
` +ȳv`+1X

v
`+1+ŷv−1

` Xv−1
` }

eβ{ȳ
v
`X

v
`−1+ŷv`X

v+1
` +ȳv`+1X

v
`+1+ŷv−1

` Xv−1
` } + e−β{ȳ

v
`X

v
`−1+ŷv`X

v+1
` +ȳv`+1X

v
`+1+ŷv−1

` Xv−1
` }

for 1 ≤ ` < k and v ∈ Z,

µx,y(X
v
k = 1|{Xw

r : (r, w) 6= (k, v)}) = νy(X
v
k = 1|{Xw

r : (r, w) 6= (k, v)}) =

eβ{ȳ
v
kX

v
k−1+ŷvkX

v+1
k +ŷv−1

k Xv−1
k }

eβ{ȳ
v
kX

v
k−1+ŷvkX

v+1
k +ŷv−1

k Xv−1
k } + e−β{ȳ

v
kX

v
k−1+ŷvkX

v+1
k +ŷv−1

k Xv−1
k }

for v ∈ Z, and µx,y(X
v
0 = 1) = 1xv0=1 for v ∈ Z, where β := log

√
(1− p)/p.

Proof. It is an elementary fact that (we use the notation Y1:k = Y1, . . . , Yk)

µX,Y (Xv
` = 1|{Xw

r : (r, w) 6= (`, v)}) = P(Xv
` = 1|X0, Y1:k, {Xw

r : (r, w) 6= (`, v)}),
νY (Xv

` = 1|{Xw
r : (r, w) 6= (`, v)}) = P(Xv

` = 1|Y1:k, {Xw
r : (r, w) 6= (`, v)}),

see [63, p. 95–96] or [52, Lemma 3.4]. That each statement in the Lemma holds
for P-a.e. (x, y) can therefore be read off from Lemma D.2. As there are countably
many statements, they can be assumed to hold simultaneously on a set A of unit
measure.

We can now complete the proof of filter stability for p > p?.

Proposition D.8. There exists an absolute constant 0 < p? < 1/2 such that

|E(f(X−mk , . . . , Xm
k )|X0, Y1, . . . , Yk)− E(f(X−mk , . . . , Xm

k )|Y1, . . . , Yk)|
≤ (8m+ 4)‖f‖∞e−k

a.s. for every k,m ≥ 1 and function f whenever p? < p ≤ 1/2.

Proof. We apply Theorem D.6 with I = {0, . . . , k} × Z and µ = µx,y, ν = νy as
defined in Lemma D.7. Evidently b(0,v) ≤ 1 and b(`,v) = 0 for 1 ≤ ` ≤ k and v ∈ Z, so
we have

|µx,y(f(X−mk , . . . , Xm
k ))− νy(f(X−mk , . . . , Xm

k ))| ≤ 2‖f‖∞
m∑

w=−m

∑

v∈Z

D(k,w)(0,v)
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by Theorem D.6 provided that the condition on the matrix C is satisfied.
We proceed to estimate the matrix C using Lemma D.7. Evidently

C(`′,v′)(`,v) = 0 if `′ = 0 or |`′ − `|+ |v′ − v| > 1 or ` = `′, v = v′.

On the other hand, note that by Lemma D.7

e−4β

e4β + e−4β
≤ µx,y(X

v
` = 1|{Xw

r : (r, w) 6= (`, v)}) ≤ e4β

e4β + e−4β
,

so we can estimate
Cji ≤ tanh(4β) < 1 for all i, j ∈ I.

It follows readily that

‖C‖∗ := sup
j∈I

∑

i∈I

e‖j−i‖Cji ≤ 4e tanh(4β).

We can now evidently choose 0 < p? < 1/2 such that 4e tanh(4β) < 1/2 for p? < p ≤
1/2. Then the condition of Theorem D.6 is satisfied. Moreover, as ‖ · ‖∗ is a matrix
norm

‖D‖∗ ≤
∞∑

n=0

‖C‖n∗ ≤ 2.

Thus we obtain

|µx,y(f(X−mk , . . . , Xm
k ))− νy(f(X−mk , . . . , Xm

k ))|
≤ (4m+ 2)‖f‖∞e−k max

w=−m,...,m

∑

v∈Z

e‖(k,w)−(0,v)‖D(k,w)(0,v)

≤ (4m+ 2)‖D‖∗‖f‖∞e−k ≤ (8m+ 4)‖f‖∞e−k.

As our estimates are valid for P-a.e. (x, y), the proof is complete.
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[23] Hans Föllmer. Tail structure of Markov chains on infinite product spaces. Z.
Wahrsch. Verw. Gebiete, 50(3):273–285, 1979.

[24] Hans Föllmer. A covariance estimate for Gibbs measures. J. Funct. Anal.,
46(3):387–395, 1982.

206
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